Neuropathology of the Anterior Midcingulate Cortex in Young Children With Autism

Neha Uppal, PhD, Bridget Wicinski, BS, Joseph D. Buxbaum, PhD, Helmut Heinsen, MD, Christoph Schmitz, MD, and Patrick R. Hof, MD

Abstract
The anterior cingulate cortex, which is involved in cognitive and affective functioning, is important in investigating disorders in which individuals exhibit impairments in higher-order functions. In this study, we examined the anterior midcingulate cortex (aMCC) at the cellular level in patients with autism and in controls. We focused our analysis on layer V of the aMCC because it contains von Economo neurons, specialized cells thought to be involved in emotional expression and focused attention. Using a stereologic approach, we determined whether there were neuropathologic changes in von Economo neuron number, pyramidal neuron number, or pyramidal neuron size between diagnostic groups. When the groups were subdivided into young children and adolescents, pyramidal neuron and von Economo neuron numbers positively correlated with autism severity in young children, as measured by the Autism Diagnostic Interview—Revised. Young children with autism also had significantly smaller pyramidal neurons than their matched controls. Because the aMCC is involved in decision-making during uncertain situations, decreased pyramidal neuron size may reflect a potential reduction in the functional connectivity of the aMCC.

Key Words: Anterior cingulate cortex, Anterior midcingulate cortex, Autism, Neuropathology, Stereology, von Economo neuron.

INTRODUCTION
Autism affects 1 in 68 children and is clinically defined by impairments in social communication and restricted and repetitive behaviors (1). Although causes of autism are slowly being identified, very few are common to even 1% of the affected population (2), and many have yet to be discovered. Although social and emotional impairments are well characterized and documented in autism, abnormalities in attention functioning, which likely subserves many high-order cognitive processes, are not yet well understood (3). One region that is involved in attention and cognitive control is the anterior cingulate cortex (ACC). The ACC integrates inputs from various sources, including sensory, motor, cognitive, and emotional information, to modulate value attribution, personality patterns, and social functioning (4, 5). The ACC is divided into 2 main areas: the “affect” area, encompassing Brodmann areas 24, 25, and 32, and the “cognitive” area, area 24 (6). These regions have been parsed out according to their distinct projections and functions (7–9). The rostral segment of the ACC is involved in emotional behaviors and modulation of autonomic function, which is corroborated by significant inputs from the amygdala (10, 11), and outputs to the periaqueductal gray (5). The caudal segment of the ACC, defined as the midcingulate cortex (MCC) in the present study, is involved in control of skeletonmotor function, response selection, nociceptive awareness, and executive control of attention (4, 5, 7, 12).

The MCC has been implicated in autism through its role in value attribution and reward (13) and consistently shows alterations in activity, as demonstrated by imaging studies (14–16). For instance, patients with autism exhibit reduced glucose metabolism, indicating reduced activity, throughout the anterior cingulate cortex and the posterior cingulate cortex (16). Diffusion tensor imaging studies also showed disrupted white matter in and adjacent to the ACC and MCC in patients with autism, suggesting impairments in connectivity (14). Reduced activity in the MCC was also shown to affect the attentional network in autism, with the lack of activity correlating with increased impairments in communication and language (15).

In parallel, the ACC has been assessed at the cellular level to uncover neuropathology that may represent the foundation of these functional changes. Kemper and Bauman (17) observed that patients with autism present with an unusually coarse and poorly laminated ACC in 5 of 6 cases. The first study to examine the ACC quantitatively analyzed the size and density of pyramidal neurons in the 3 subregions of the ACC (areas 24a, 24b, and 24c) according to the cytoarchitectural parcellation by Vogt et al (18), as well as von Economo neuron (VEN) density, size, and distribution in 9 male subjects with autism spanning...
adolescence and adulthood (19). Neuron size was significantly smaller in superficial layers II and III and in deep layers V and VI in area 24b, and neuron density was reduced in deep layers in area 24c. Although other pathologic changes were reported in that study, they only applied to smaller subgroups of patients with autism and could not be categorized using typical characteristics such as age, sex, or autism severity (19). To understand these subtle changes better, we have re-evaluated the possible presence of changes in VEN numbers, pyramidal neuron number, and pyramidal neuron number size, and their relationship with the diagnosis of autism.

MATERIALS AND METHODS

Subjects

A total of 14 postmortem brains (1 hemisphere per case, except for 1 control subject, coded both C1 and C2, and 1 patient with autism, coded both A1 and A2, in which both hemispheres were available) were analyzed. Subjects consisted of 7 patients with autism (4 male subjects, with both hemispheres analyzed in 1 male, and 3 female subjects, aged 4–21 years) and 7 control subjects (2 male subjects, with both hemispheres analyzed in 1 male, and 5 female subjects, aged 4–20 years), making a total of 8 pairs. This work involved exclusively postmortem materials and was approved by Autism Speaks and the Icahn School of Medicine at Mount Sinai Institutional Review Board. All postmortem materials used in this study were directly obtained from Autism Speaks. All necessary written informed consent forms were obtained from the patients or their next of kin and confirmed at the time of death. Demographic and clinical characteristics of the series are summarized in Table 1.

Tissue Preparation

Tissue processing for all cases used in this study was performed at the New York State Institute for Basic Research in Developmental Disabilities (Staten Island, NY) and at the Morphologic Brain Research Unit, University of Würzburg (Würzburg, Germany), as described previously (20–22). Brains were divided medially sagittally, and either the left hemisphere or the right hemisphere was available for each case; in a select few cases, both hemispheres were processed. Immersion-fixation was performed in 10% formalin for at least 3 months, followed by embedding in celloidin and cutting into complete series of 200-μm-thick sections (every third section available for our analysis) or 500- and 600-μm-thick sections (every other section available for our analysis).

Regional Definition

The MCC encompasses several cytoarchitecturally and functionally distinct areas; in this study, we focused on the anterior MCC (aMCC). This region corresponds to the ACC domain investigated in a previous neuropathologic study of patients with autism (19). Our sampled sections ranged from the midline crossing of the genu of corpus callosum to the crossing of the anterior commissure, which encompasses the aMCC. Cytoarchitecturally, the aMCC corresponds to area 24′, as described by Vogt et al (18) (Figs. 1A, B). Area 24′ is localized in the midline surface of the brain, bordered ventrally by the callosomarginal area 33 and the corpus callosum and dorsally by paracingulate area 32′ (a cingulofrontal transition area). Anteriorly, area 24′ merges with area 24 (ACC); posteriorly, area 24′ borders area 23, the posterior cingulate cortex (18).

Area 24′ is an agranular cortex that is subdivided into 3 segments: areas 24a′, 24b′, and 24c′, with each of these subareas being adjacent in a ventrodorsal sequence (Figs. 1C–E). As defined by Vogt et al (18), area 24a′ has a well-defined laminar architecture, with clear layers II and III, a distinct layer Va populated with large neurons adjacent to a neuron-sparse layer Vb, and a denser layer VI populated with smaller neurons. Area 24b′ has a distinct layer II, broad layers III and Vb, and a robust layer Va with large pyramidal neurons. In area 24c′, layers II and III are as thick as or thinner than layers V and VI. A greater amount of smaller neurons in layer Va makes this layer more prominent, though thinner, in area 24c′ than in adjacent area 24b′; in addition, layer Vb in area 24c′ has more medium-sized neurons, making the subdivisions of layer V less distinguishable. This area is anterior to the posterior MCC, which abuts the posterior area 23.

Cytoarchitecturally, there are several defining features that clearly distinguish area 24′ from adjacent cortical regions (18). On its dorsal border, area 32′ has some characteristics of a frontal cortical area, with a clear layer IV and large neurons in layer IIC, while still containing a prominent, though less dense, layer Va. On its ventral border, area 33 has little laminar distinction, with clear separation only between layers I and II, and a small population of large neurons distinguishing layer Va. Area 24 lies anterior to area 24′; both of these areas are subdivided into 3 segments (a, b, and c), but generally, area 24 has a higher neuron density and thicker layers III and Va (18). More specifically, area 24a has a less distinct layer II, a thinner layer III, a thicker layer Va, and a more clearly defined layer VI than area 24a′. Area 24b has thicker layers III and Vb compared with area 24b′, and area 24c has a denser layer III, but a more sparse layer Vb. Posteriorly, area 23 is a granular cortex with clear layers IIC, IV, and Va.

Another prominent cytoarchitectural characteristic that defines both areas 24 and 24′ is the presence of VENs in layer Vb. These bipolar cells with symmetric basal and apical dendrites (Fig. 2C) are generally perpendicular to the pial surface and are observed in clusters of 2 to 3 VENs (23). Von Economo neurons are predominant in areas 24a′ and 24b′ and rarer in area 24c′ and have a clear rostrocaudal gradient; therefore, VENs are more prevalent in areas 24a and 24b than in areas 24a′ and 24b′ and are not present at all in area 23. Most VENs assessed were present in area 24b′, with a high density at the edges of area 24b′ (23). In some cases, a dimple was present in area 24b′, within which VENs were less common (23).

We considered these cytoarchitectural characteristics to be reliable criteria for defining the aMCC, in accordance with recent ACC parcellations (18, 23) and classic descriptions, including Brodmann area 24 and von Economo limbic anterior area (24, 25).

Stereologic Design

For stereologic quantification, within the anatomic range defined previously, we selected every fifth section in the
<table>
<thead>
<tr>
<th>Case</th>
<th>Diagnosis</th>
<th>Age, years</th>
<th>Sex</th>
<th>Hemisphere</th>
<th>Cut/Mounted Thickness, μm</th>
<th>Postmortem Interval, hours</th>
<th>Brain Weight, g</th>
<th>Cause of Death</th>
<th>Relevant Clinical Information</th>
<th>ADI-R</th>
</tr>
</thead>
<tbody>
<tr>
<td>425-02</td>
<td>A1</td>
<td>4</td>
<td>M</td>
<td>L</td>
<td>200/164.15</td>
<td>30</td>
<td>1,160</td>
<td>Drowning</td>
<td>Symptoms present at 2 years, frequent tantrums and self-injurious behavior, used parents’ hand to reach objects, echolalia, tendency to walk on his tiptoes, stereotypic play</td>
<td>14, 10 (NV), 3</td>
</tr>
<tr>
<td>15-763-95</td>
<td>C1</td>
<td>4</td>
<td>M</td>
<td>L</td>
<td>600/515.14</td>
<td>3</td>
<td>1,380</td>
<td>Myocardial infarct</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>425-02</td>
<td>A2</td>
<td>4</td>
<td>M</td>
<td>R</td>
<td>200/158.8</td>
<td>30</td>
<td>1,160</td>
<td>Drowning</td>
<td>Symptoms present at 2 years, frequent tantrums and self-injurious behavior, used parents’ hand to reach objects, echolalia, tendency to walk on his tiptoes, stereotypic play</td>
<td>14, 10 (NV), 3</td>
</tr>
<tr>
<td>15-763-95</td>
<td>C2</td>
<td>4</td>
<td>M</td>
<td>R</td>
<td>600/567.9</td>
<td>3</td>
<td>1,380</td>
<td>Myocardial infarct</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>443-02</td>
<td>A3</td>
<td>5</td>
<td>F</td>
<td>R</td>
<td>200/184.15</td>
<td>13.25</td>
<td>1,390</td>
<td>Multiple injuries</td>
<td>Symptoms present at 18 months, tendency to bump into people and objects, echolalia, used parents hands as tools, walked on tiptoes often, chronic otitis media</td>
<td>26, 11 (NV), 4</td>
</tr>
<tr>
<td>426-02</td>
<td>C3</td>
<td>4</td>
<td>F</td>
<td>R</td>
<td>200/171.05</td>
<td>21</td>
<td>1,222</td>
<td>Lymphocytic myocarditis</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>M6-06</td>
<td>A4</td>
<td>7</td>
<td>M</td>
<td>R</td>
<td>200/176.0</td>
<td>25</td>
<td>1,610</td>
<td>Drowning</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>15-138-97</td>
<td>C4</td>
<td>7</td>
<td>F</td>
<td>R</td>
<td>500/372.67</td>
<td>74</td>
<td>1,350</td>
<td>Asthma</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>M5-03</td>
<td>A5</td>
<td>8</td>
<td>M</td>
<td>R</td>
<td>200/176.7</td>
<td>22.2</td>
<td>1,570</td>
<td>Rhabdomyosarcoma</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>M3-04</td>
<td>C5</td>
<td>8</td>
<td>F</td>
<td>R</td>
<td>200/184.41</td>
<td>20</td>
<td>1,222</td>
<td>Multiple injuries</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>445-02</td>
<td>A6</td>
<td>13</td>
<td>M</td>
<td>L</td>
<td>200/158.47</td>
<td>8</td>
<td>1,470</td>
<td>Seizure</td>
<td>—</td>
<td></td>
</tr>
</tbody>
</table>
200-μm-thick series and every third section in the 500- and 600-μm-thick series. This approach ensured that the aMCC was sampled in a consistent and unbiased manner. All quantitative analyses were performed using a stereology workstation equipped with a Zeiss Imager A1 microscope, Plan-Neofluar objectives 2.5× (numeric aperture, 0.075) and 40× (numeric aperture, 0.75) and Plan-Apochromat objective 63× (numeric aperture, 1.4 oil differential interference contrast), a motorized stage (Ludl Electronics, Hawthorne, NY), an MBF CX9000 camera (MBF Bioscience, Williston, VT), and stereology software (Stereo Investigator, version 11.01; MBF Bioscience). Intrarater quality control tests, although not performed directly for this set of analyses, were done independently of this study and in the same materials as part of a general pilot experiment to establish parameters and were found to be highly reliable.

Starting with a random section number, a systematic-random scheme was applied, sampling throughout the aMCC. The boundaries of layer V of the aMCC were traced at 2.5× using cytoarchitectural characteristics described previously.

Given that VENs account for a very small percentage of the total neuron population in layer V with a nonhomogeneous distribution, we performed an exhaustive count in the x and y axes to ensure that every VEN had an equal probability of being counted (Table 2). A final estimate of the VEN population was done using the optical fractionator probe to account for the z

| Social disorders in immediate family | Intrarater quality control tests |FIGURE 1. Cytoarchitectural characteristics of the aMCC. (A) Midsagittal view of the human brain depicting the location of the sampled aMCC in pink. (B) Nissl-stained section of the right hemisphere of a human brain showing the localization of the aMCC and outlining the individual subsections (area 24a’, pink; area 24b’, blue; area 24c’, green). Photomicrographs illustrating the cytoarchitectural characteristics of the subdivisions of area 24’ (the aMCC): area 24a’ (C), area 24b’ (D), and area 24c’ (E). Scale bars = (A, B) 1 cm; (C-E) 200 μm. cc, corpus callosum. |
Pyramidal neuron perikaryal volume was estimated in layer V, in which pyramidal neurons were quantified using a systematic-random sampling sequence of counting frames within the user-defined output guard zones, and the total volume of layer V was estimated using the Cavalieri principle and corrected for overprojection (26).

Statistical Analysis

Paired t-tests were performed to compare the 8 autism patients and their age-matched controls. Measures of VEN number, pyramidal neuron number, ratio of VENs to pyramidal neurons, pyramidal neuron size, and layer V volume were all analyzed. In addition, correlations between these parameters and Autism Diagnostic Interview—Revised (ADI-R) scores were analyzed using linear regression analysis. We also used repeated-measures analysis of variance to control for potential effects of age, sex, postmortem interval, and hemisphere. In addition, because pairs 1 and 2 consisted of both hemispheres of the same patient with autism and a control, we also conducted paired t-tests excluding each pair to determine whether having both hemispheres of the same cases would confound the results. In all analyses, the criterion for statistical significance was a value of p = 0.05 for a 2-sided test. Calculations were performed using GraphPad Prism version 5.03 (GraphPad Software, San Diego, CA).

Photography

The photograph of the full brain in Figure 1A was taken with a Nikon Coolpix P100 and produced with Adobe Photoshop version 11.0.2 (Adobe Systems Inc, San Jose, CA). Figure 1B was generated by scanning a histologic section of the right hemisphere of the brain of Case C4 at high resolution (1,200 dpi; CanoScan LiDE 500F Scanner; Canon, Tokyo, Japan). The photomicrographs used in Figures 1C to E are photomicrographs of Case C7 taken at 20× of subareas in the aMCC. Photomicrographs of individual pyramidal neurons in

TABLE 2. Stereologic Parameters Used for Quantification in Control Subjects and Patients With Autism

<table>
<thead>
<tr>
<th>Parameters Assessed</th>
<th>VENs</th>
<th>Pyramidal Neurons</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. sections, mean</td>
<td>6.9</td>
<td>6.9</td>
</tr>
<tr>
<td>Objective 1</td>
<td>2.5×</td>
<td>2.5×</td>
</tr>
<tr>
<td>Objective 2</td>
<td>63×</td>
<td>63×</td>
</tr>
<tr>
<td>Dicector height, μm</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>Guard zone, μm</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Counting frame, μm</td>
<td>140×110</td>
<td>50×50</td>
</tr>
<tr>
<td>Grid, μm</td>
<td>140×110</td>
<td>650×400</td>
</tr>
<tr>
<td>Measured thickness, mean, μm</td>
<td>174.36</td>
<td>174.36</td>
</tr>
<tr>
<td>Cut at 200 μm</td>
<td>372.67</td>
<td>372.67</td>
</tr>
<tr>
<td>Cut at 500 μm</td>
<td>541.52</td>
<td>541.52</td>
</tr>
<tr>
<td>Schmitz-Hof coefficient of error</td>
<td>0.049</td>
<td>0.073</td>
</tr>
</tbody>
</table>

© 2014 American Association of Neuropathologists, Inc.
Figure 2 were taken with the 63× objective. All images were edited for brightness and contrast in Adobe Photoshop without altering the appearance of the original materials. Graphs in Figures 3 through 6 were created using GraphPad Prism version 5.03 (GraphPad Software).

RESULTS

This study focused on layer V of the aMCC, located in the midline, dorsal to the corpus callosum. The aMCC roughly begins along with the anterior aspect of the crossing of the genu and continues posteriorly until the level of the crossing of the anterior commissure. This area is of particular interest because of the presence of many VENs in layer V. Therefore, we estimated VEN number, pyramidal neuron number, pyramidal neuron size, and layer volume in patients with autism and in control subjects to understand whether VENs were selectively disrupted in autism.

Analyses included all pairs listed in Table 1. The estimated mean VEN population ($t_7 = 1.042, p = 0.332$) was not significantly different between patients with autism and controls, nor was the mean pyramidal neuron number ($t_7 = 0.023, p = 0.983$) or the mean ratio of VENs to pyramidal neurons ($t_7 = 0.877, p = 0.41$; Fig. 3A). There was no difference in mean perikaryal volume ($t_7 = 1.506, p = 0.176$), mean density of VENs ($t_7 = 0.561, p = 0.593$), mean density of pyramidal neurons ($t_7 = 0.662, p = 0.529$), and mean volume of layer V ($t_7 = 0.756, p = 0.475$) between patients with autism and controls (Fig. 3B). Full results are shown in Table 3. These results were still nonsignificant when either pair 1 or pair 2 was removed from the analysis (Table 4).

We also assessed each parameter with repeated-measures analysis of variance to control for age, postmortem interval, sex, and hemisphere. All parameters, except perikaryal volume, were not significantly affected by these covariates. As was age ($F_1 = 27.552, p = 0.002$), sex was a significant covariate with perikaryal volume, with male subjects having larger neurons than female subjects ($F_1 = 6.548, p = 0.043$) (Fig. 4). To further explore this age effect on perikaryal volume, we subdivided the autism and control groups into young children (aged 4–8 years) and adolescents (aged 13–21 years) to determine if there were age-specific changes. When statistical analyses were performed for these groups in all analyzed parameters, young children with autism were found to have significantly smaller mean perikaryal volume than controls on paired t-test ($t_4 = 4.378, p = 0.012$) and unpaired t-test ($t_8 = 4.496, p = 0.002$) (Fig. 5). Young control children had significantly higher perikaryal volumes than control adolescents ($t_6 = 3.287, p = 0.017$, unpaired t-test), whereas adolescents with autism had significantly higher mean perikaryal volumes than young children with autism ($t_6 = 3.683, p = 0.01$, unpaired t-test; Fig. 5). These results also remained significant when pair 1 or pair 2 was excluded (Table 4).

To determine whether the analyzed parameters correlated with ADI-R scores, we performed linear regression for each parameter with each ADI-R score. The ADI-R is a quantitative index of autism severity, as assessed through the 3 major characteristics of autism: impairments in social interaction, impairments in social communication, and presence of restrictive and repetitive behaviors. These behaviors are measured on a scale, with higher scores corresponding to
served for all parameters when we compared adolescents with autism and their matched controls.

Potential Role of the aMCC in Autism

The aMCC is activated during acute nociceptive awareness, anxiety, pain anticipation, and reward (33–41), with inputs from the amygdala, insula, striatum, spinthalamic tract, inferior parietal cortex, and midline and intralaminal thalamic nuclei influencing its function (11, 42–50). Essentially, the aMCC seems to be involved in determining the optimal response to an uncertain situation by integrating information on punishment (and, potentially, information on reward) to send control signals to motor areas both cortically and subcortically (38, 51–53). In this scheme, each area connected to the aMCC

<table>
<thead>
<tr>
<th>Variable</th>
<th>All Pairs</th>
<th>Without Pair 1</th>
<th>Without Pair 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ratio of VENs to pyramidal neurons</td>
<td>0.41</td>
<td>0.17</td>
<td>0.64</td>
</tr>
<tr>
<td>Estimated VEN population</td>
<td>0.332</td>
<td>0.254</td>
<td>0.356</td>
</tr>
<tr>
<td>Estimated pyramidal neuron population</td>
<td>0.983</td>
<td>0.865</td>
<td>0.527</td>
</tr>
<tr>
<td>Perikaryal volume, (\mu m^3)</td>
<td>0.176</td>
<td>0.355</td>
<td>0.35</td>
</tr>
<tr>
<td>Layer V volume, (mm^3)</td>
<td>0.475</td>
<td>0.414</td>
<td>0.189</td>
</tr>
<tr>
<td>Density of VENs</td>
<td>0.593</td>
<td>0.532</td>
<td>0.938</td>
</tr>
<tr>
<td>Density of pyramidal neurons</td>
<td>0.529</td>
<td>0.31</td>
<td>0.342</td>
</tr>
<tr>
<td>Perikaryal volume, (\mu m^3)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Children aged 4–8 years</td>
<td>0.012</td>
<td>0.036</td>
<td>0.04</td>
</tr>
<tr>
<td>Autism</td>
<td>0.01</td>
<td>0.014</td>
<td>0.016</td>
</tr>
<tr>
<td>Controls</td>
<td>0.017</td>
<td>0.022</td>
<td>0.038</td>
</tr>
</tbody>
</table>

DISCUSSION

This study sought to assess whether neuropathology was present in the aMCC of children and adolescents with autism. Reduced pyramidal neuron size was found specifically in children with autism aged 4 to 8 years, with no changes in pyramidal neuron number and density, VEN number and density, or layer volume. No statistically significant difference was observed for all parameters when we compared adolescents with autism and their matched controls.

TABLE 4. Summary of Statistical Results in Patients With Autism and in Controls

increased severity of changes for a given behavior. The number of VENs was significantly positively correlated with social interaction score (\(p = 0.0143, R^2 = 0.08981 \)), and the number of pyramidal neurons was significantly positively correlated with restricted and repetitive behavior scores (\(p = 0.0249, R^2 = 0.8537 \)) (Fig. 6).
would play a specific role: Connections between the aMCC and the amygdala, for example, are likely crucial in influencing the activity of the aMCC, as the amygdala detects biologically salient stimuli for response formation, in addition to its well-documented role in fear and anxiety (54, 55).

A defining feature of children with autism is their propensity for routine; change, even in small quantities, is difficult to adjust to (56, 57). When change does occur, typically developing children can assess the current situation, weigh out courses of action, and respond promptly to achieve an optimal outcome. In situations that are not only uncertain but potentially threatening, the aMCC integrates the appropriate cognitive, affective, and noxious inputs to determine a suitable behavior. However, if the aMCC is functionally deficient, it can be challenging to handle a new, uncertain situation. Dysfunction of the aMCC may substantiate the feeling of uncertainty if the circuitry required to generate an adequate reaction to an uncertain situation is not properly established (38, 58).

Pyramidal Neurons in the aMCC

It may be the case that, in young children with autism, long-range connections among areas that interact with the aMCC to provide initial information on the current situation and consequences of relative courses of action are not communicating properly. In addition, these long-range connections between the aMCC and the appropriate motor-related areas are needed to act upon the planned response. These connections originate from pyramidal neurons, the main excitatory projection neurons in the cortex, and potentially from VENs. In the aMCC, young children with autism have significantly smaller layer V pyramidal neurons compared with controls. If there is a significant reduction in the size of pyramidal neurons, there could be a proportional effect on dendritic complexity and axonal length (59–62) and functional impairments at the cellular level (63–65), suggesting that inputs and outputs of the aMCC may not be adequately established. In fact, aMCC layer V pyramidal neurons are connected to cortical areas such as the insula and inferior parietal cortex, and subcortical areas, including the amygdala, striatum, and thalamus, have inputs to and/or outputs from the aMCC (11, 42–50). Impaired communication between these areas and the aMCC caused by neuropathologic changes in pyramidal neuron size and structure may thus represent a correlate of abnormalities in connectivity in young children with autism; this hypothesis is corroborated by white matter reduction in autism, as demonstrated in imaging studies (14, 66, 67).

Upon assessment of the developmental trajectory of pyramidal neurons in the aMCC, controls display a clear downward trend, with significantly larger pyramidal neurons in young children compared with adolescents (Fig. 5). This implies that pyramidal neurons display a smaller size with age, likely because of synaptic pruning (68). This same developmental trajectory goes slightly upward in patients with autism, as young children with autism have significantly smaller pyramidal neurons than their adolescent counterparts. This trend may reflect a delay in the development of certain connections from childhood to adolescence. In addition, the segregation of pyramidal neuron size by sex (Fig. 4) is an interesting finding, raising the possibility of sex differences in pathology severity. This finding should be considered with caution as the sample size is quite small.

![Figure 4](http://jnen.oxfordjournals.org/)

FIGURE 4. Sex differences in perikaryal volume. (A) Neuronal size in patients with autism and in controls is significantly larger in male subjects than in female subjects (*p = 0.043). (B, C) Sex differences between patients with autism (B) and controls (C). Male subjects are shown in blue, and female subjects are shown in pink.
FIGURE 5. Perikaryal volume is significantly smaller in children with autism. (A) Neuronal size in patients with autism and in controls across all ages; note that the volume is not significantly different. (B) There is a significantly smaller size of neurons in children with autism (aged 4–8 years) versus age-matched controls (* p = 0.012). (C) Developmental trajectory of pyramidal neuron size in children and adolescents. (D) Developmental trajectory of pyramidal neuron number in children and adolescents. Ages of patients with autism and controls, respectively, are listed under each pair. (E) Three-dimensional graph depicting the relationship between pyramidal neuron number and volume with age. Typically developing controls are shown in black, and patients with autism are shown in red.
In the only other quantitative neuropathologic study of this area in autism, Simms et al (19) reported that a subset of patients with autism had significantly smaller pyramidal neurons in layer V of the aMCC. This finding is consistent with previously reported reductions in pyramidal neuron size in the fusiform gyrus and in areas 44 and 45 (69, 70). The amygdala and fusiform gyrus also have reduced neuron density in autism, as reported by Simms et al (19), van Kooten et al (70), and Schumann and Amaral (71). These alterations in pyramidal neuron size and density may represent areas in which neuronal development or circuitry has been specifically affected in autism; not all cortical regions show such alterations (70, 72).

The functional consequences of abnormal connectivity in the aMCC may be reflected behaviorally as a need for consistency of routine to cope with the difficulty of selecting an appropriate response in an uncertain situation. The overlap in fear and pain areas in the aMCC implies that this area is involved in avoidance behavior (7), which has been reported to be increased in patients with autism (73). In this regard, we assessed whether the tested parameters correlated with symptom severity in patients with autism. We found that children presenting with an increase in restrictive and repetitive behaviors also had an increased amount of pyramidal neurons in the aMCC (Fig. 6). If we speculate that some neurons in the aMCC play a role in the generation of restrictive and repetitive behaviors, then this positive correlation may suggest a neural basis for increased severity of this symptom in some patients with autism. As the number of available cases increases in the future, we will be able to determine whether this relationship holds true with a larger cohort and broader severity distribution.

VENs in the aMCC

The presence of VENs adds another layer of complexity to the aMCC. These large bipolar spindle-shaped neurons are present in the anterior portion of the cingulate gyrus (namely, the ACC and the MCC), but their numbers quickly decrease in the posterior MCC (23, 25). The probable role of VENs in social functioning has been proposed based on their expression of vasopressin 1a receptors, which are involved in social bonding (74), and their location in both the frontoinsular cortex and the ACC, which are areas involved in empathy and emotion (75, 76). A role for VENs in the aMCC could be related to their strong expression of both dopamine D3 receptors and serotonin 2b receptors (76). Dopamine D3 receptors are linked to the expectation of reward under uncertainty (77), which is correlated with the function of the aMCC in response selection during an uncertain situation. Serotonin 2b receptors, on the other hand, are associated with the anticipation of punishment (78), suggesting that VENs may be signaling forthcoming punishment or danger and possibly a “gut” feeling of potential aversive situations. These opposing functions suggest that VENs in the aMCC may contribute to the intuitive feeling that often drives quick decisions by assessing the likelihood of punishment versus reward in a situation of uncertainty (76).

In addition, we assessed whether VEN number was correlated with any specific symptom of autism, as measured through ADI-R subcategories. We observed that young children with autism had a significant correlation between social interaction score on the ADI-R and VEN numbers, indicating that children who are more impaired in reciprocal social interaction have an increased amount of VENs (Fig. 6). Interestingly, Simms et al (19) also reported that a subgroup of their cohort of patients with autism had increased VEN density. This may reflect a subgroup with higher severity of social interaction deficits; however, this study did not correlate VEN density with individual autism characteristics. Because the aMCC is reciprocally connected with subcortical areas, such as the amygdala (11, 42–50), and VENs may transmit information on our homeostatic bodily state (25, 28, 79, 80), one potential explanation for the correlation between higher VEN number and increased social impairment is that the abnormal VEN number may underlie heightened anxiety and avoidance behaviors. As for our original question regarding selective VEN disruption in autism, we did not find a difference in VEN number or density in patients with autism and in controls. However, this does not suggest that abnormalities do not exist in VENs in the aMCC in autism; future studies should expand to include more properties.

FIGURE 6. Autism Diagnostic Interview—Revised scores correlate with neuron number in children with autism. There are significant correlations between VEN population and social interaction score \((p = 0.0143)\) (A) and between pyramidal neuron population and restrictive and repetitive behavior score \((p = 0.0249)\) (B) on the ADI-R.
of VENs, such as gene and protein expression patterns and cellular volume. In conclusion, the results of this study suggest that young children with autism show neuron-specific neuropathologic changes in the aMCC, an area primarily involved in response selection. Although this area is not strongly linked to the social and emotional aspects of behavior, it is a crucial component of our ability to adapt in novel situations. As young children with autism are characterized by their inability to adjust and their strong propensity for routines, the aMCC is a prime candidate for potential dysfunction in autism. In fact, the reduction in pyramidal neuron size suggests that this area may not be receiving the appropriate input to assess an uncertain situation, and that it may not be appropriately able to modulate areas involved in motor function to carry out an adequate response. This impairment in connectivity supports the hypothesis that patients with autism have global underconnectivity and local overconnectivity (81), which have been supported by many neuropathologic studies of autism (19, 69–71, 79, 82, 83). In addition, our data also suggest that the individual severity of autism in a young child may, in part, be tied to the severity of neuropathology. The correlation between neuronal pathology and increased severity of specific autism symptoms provides newfound insight toward potential cellular underpinnings of autism heterogeneity. These results, along with other neuropathologic findings in autism, suggest that the impact of autism occurs very early in life, likely in the prenatal period (69–72, 82, 83). In addition, the specificity of pyramidal neuron volume neuropathology in young children with autism corresponds to previous reports of distinct abnormalities in children that are not present in adults (81). The abnormalities characterized in postmortem cases are likely the compensatory effects of earlier insults, which may be much less pronounced with age, as indicated by the lack of abnormalities in adolescents with autism. These results provide a stronger understanding of cellular-level changes that may cause the behavioral changes in children with autism and provide insight on potential targets for early intervention.

ACKNOWLEDGMENTS

We thank Drs Jane Picket and Daniel Lightfoot (Autism Speaks), Mrs Ellen Xiu (Autism Speaks), and Dr Jerzy Wegiel (New York State Institute for Basic Research) for their help in securing the precious postmortem brain materials used in this study. We would also like to acknowledge the Bronx James J. Peter VA Medical Center Brain Bank, Harvard Brain Tissue Resource Center, National Institute of Child Health and Human Development Brain Tissue Bank, New York State Institute for Basic Research in Developmental Disabilities, Oxford Brain Bank, University of Maryland Brain and Tissue Bank, and University of Würzburg Morphologic Brain Research Unit for the materials used in this study. We are deeply indebted to the patients’ families who have made this study possible.

REFERENCES

20. Heinsen H, Heinsen YL. Serial thick, frozen, gallocyanin stained sections without infiltration (81), which have been supported by many neuropathologic studies of autism (19, 69–71, 79, 82, 83). In addition, our data also suggest that the individual severity of autism in a young child may, in part, be tied to the severity of neuropathology. The correlation between neuronal pathology and increased severity of specific autism symptoms provides newfound insight toward potential cellular underpinnings of autism heterogeneity. These results, along with other neuropathologic findings in autism, suggest that the impact of autism occurs very early in life, likely in the prenatal period (69–72, 82, 83). In addition, the specificity of pyramidal neuron volume neuropathology in young children with autism corresponds to previous reports of distinct abnormalities in children that are not present in adults (81). The abnormalities characterized in postmortem cases are likely the compensatory effects of earlier insults, which may be much less pronounced with age, as indicated by the lack of abnormalities in adolescents with autism. These results provide a stronger understanding of cellular-level changes that may cause the behavioral changes in children with autism and provide insight on potential targets for early intervention.

40. Wallas JD, Kennerley SW. Heterogeneous reward signals in prefrontal cortex and amygdala. Neuroimage 2007;34:905–16.

