Characteristics of Aquaporin Expression Surrounding Senile Plaques and Cerebral Amyloid Angiopathy in Alzheimer Disease

Akihiko Hoshi, MD, PhD, Teiji Yamamoto, MD, PhD, Keiko Shimizu, MT, Yoshikazu Ugawa, MD, PhD, Masatoyo Nishizawa, MD, PhD, Hitoshi Takahashi, MD, PhD, and Akiyoshi Kakita, MD, PhD

Abstract

Senile plaques (SPs) containing amyloid β peptide (Aβ) 1–42 are the major species present in Alzheimer disease (AD), whereas Aβ1–40 is the major constituent of arteriolar walls affected by cerebral amyloid angiopathy. The water channel proteins astrocytic aquaporin 1 (AQP1) and aquaporin 4 (AQP4) are known to be abnormally expressed in AD brains, but the expression of AQPs surrounding SPs and cerebral amyloid angiopathy has not been described in detail. Here, we investigated whether AQP expression is associated with each species of Aβ deposited in human brains affected by either sporadic or familial AD. Immunohistochemical analysis demonstrated more numerous AQP1-positive reactive astrocytes in the AD cerebral cortex than in controls, located close to Aβ42- or Aβ40-positive SPs. In AD cases, however, AQP1-positive astrocytes were not often observed in Aβ-rich areas, and there was a significant negative correlation between the levels of AQP1 and Aβ42 assessed semiquantitatively. We also found that Aβ plaque-like AQP4 was distributed in association with Aβ42- or Aβ40-positive SPs and that the degree of AQP4 expression around Aβ40-positive vessels was variable. These findings suggest that a defined population of AQP1-positive reactive astrocytes may modify Aβ deposition in the AD brain, whereas the Aβ deposition process might alter astrocytic expression of AQP4.

Key Words: Amyloid-β peptides 42 and 40, Aquaporin 1, Aquaporin 4, Alzheimer disease, Cerebral amyloid angiopathy, Senile plaques.

INTRODUCTION

Alzheimer disease (AD) is characterized pathologically by abnormal accumulation of extracellular aggregates of amyloid-β peptide (Aβ) (1). A major component of these SPs is Aβ 1–42 (Aβ42), and the presence of Aβ 1–40 (Aβ40)-positive amyloid seems to be related to the development of SPs (2). Although they differ in only 2 amino acid residues at the C-terminal end, Aβ42 shows a stronger tendency to aggregate and is more toxic to neurons than Aβ40 (3). On the other hand, the major vascular pathology in AD is cerebral amyloid angiopathy (CAA), which results from Aβ40 deposition in arteriolar media (1, 4). Proportions of vessels containing Aβ40 deposits varied considerably among AD cases, and the severity of AD is not correlated with the extent of parenchymal Aβ deposition (1, 5). Despite extensive studies, how SPs and CAA are formed or degraded and how they relate to AD pathogenesis are still unclear.

The role of astroglia in Aβ processing and metabolism also remains unclear, but reactive astrocytosis in AD suggests their participation in the clearance and degradation of Aβ (6–9). Indeed, reactive astrocytes often surround SPs or CAA in AD brains; thus, they seem to regulate Aβ deposition (10, 11). Several recent studies have demonstrated that some of the water channel proteins, astrocytic aquaporin 1 (AQP1) and/or aquaporin 4 (AQP4), are abnormally expressed in AD brains (12–15). AQP1 is normally expressed in the apical membrane of the choroid plexus and participates in the formation of cerebrospinal fluid (16–19). AQP4 shows polarized localization in astrocyte foot processes where it is involved in brain edema formation in cases of stroke, brain tumor, acute bacterial meningitis, and brain abscesses (18–23).

Differences between astrocytic AQP1 and AQP4 expression around SPs and CAA have not been investigated in detail. Thus, the precise roles of AQP expression in AD remain unknown. Because these channels are often localized near sites of Aβ deposition, we hypothesized that they might play a pivotal role in the degenerative processes of AD by modifying Aβ pathology. Therefore, we investigated whether AQP1 or AQP4 expression was associated with deposition of each Aβ species in human brains with advanced AD.

MATERIALS AND METHODS

Neuropathologic Assessment

Informed consent for research on all brain tissue was obtained from the Brain Research Institute, University of Niigata. The study was approved by the Ethics Committee of Fukushima Medical University. Autopsied brains of 8 patients with AD (5 with sporadic AD [sAD] and 3 with familial AD [fAD]) were examined and compared with the brains of 5 age-matched controls experiencing nonneurologic conditions. Each diagnosis was based on both clinical history and postmortem neuropathologic verification (24). Clinical data for the 13 patients are summarized in the Table. In all cases, the temporal lobes (superior, middle, and inferior temporal gyrus)
were used for the immunohistochemical study. The extent of Aβ42 and Aβ40 deposition in immunostained sections was rated semiquantitatively, as previously reported (4).

Immunohistochemistry

Tissue samples were processed into 4-μm-thick paraffin-embedded sections, and immunostaining was performed using the EnVision (Dako, Glostrup, Denmark) system. The sections were deparaffinized, and nonspecific binding was blocked with 2.4% goat serum and 30% H2O2 for 30 minutes at room temperature. After washing with phosphate-buffered saline, the slides were incubated overnight at 4°C with primary antibodies. The primary antibodies and dilutions used were rabbit polyclonal anti-AQP1 antibody (1:1000; Chemicon International, Temecula, CA), rabbit polyclonal anti-AQP4 antibody (1:500; Santa Cruz Biotechnology, Santa Cruz, CA), rabbit polyclonal anti-Aβ42 antibody (1:500; Calbiochem, Billerica, MA), rabbit polyclonal anti-Aβ40 antibody (1:500; Calbiochem, Millipore), and mouse monoclonal anti-glial fibrillary acidic protein (GFAP) antibody (1:1000; Chemicon). The secondary antibodies and dilutions used were fluorescein isothiocyanate-coupled goat anti-mouse IgG (1:100; KPL, Gaithersburg, MD), and Cy3-conjugated donkey anti-rabbit IgG (1:100; Jackson ImmunoResearch, West Grove, PA). Immunostained sections and fluorescent specimens were analyzed using a microscope digital camera system (DP70; Olympus, Tokyo, Japan).

Statistical Analysis

In all AD cases, the fluorescence intensity of AQP1 and Aβ42 was evaluated as relative fluorescence units and quantified using image analysis software (Lumina Vision; Mitani Corp., Tokyo, Japan), as reported previously (21). About 4 to 6 areas of 0.14 mm² were randomly selected from photographs of specimens that had been immunostained for AQP1 and Aβ42 taken from the superior, middle, and inferior temporal cortices of patients with AD. Correlations between AQP1 and Aβ42 levels in relative fluorescence units were assessed using both Spearman correlation and regression analyses. Statistical significance was set at p < 0.05. AQP1 or AQP4 immunoreactivity (IR) in the cerebral cortex was also semiquantified using image analysis software (Win Roof; Mitani Corp.), as described previously (25). The quantification measure, referred to as the relative density, was defined as the saturation value of AQP1 or AQP4 immunostaining on digitized images. Three random areas, each measuring 3.44 mm² in the superior, middle, and inferior temporal cortices, were assessed in all cases. All data were expressed as means ± SD. One-way ANOVA, followed by the Bonferroni test, was performed for statistical comparisons of the semiquantitatively measured AQP4 IR levels. Differences at p < 0.05 were regarded as statistically significant.

RESULTS

Aβ Deposition

All AD cases had numerous Aβ42 deposits in the cortex but the extent of Aβ40 accumulation relative to Aβ42 was highly variable (Table). Aβ40 deposits in both leptomeningeal and intracortical small vessels and capillaries were also

<table>
<thead>
<tr>
<th>TABLE. Patient Clinical and Neuropathologic Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Case</td>
</tr>
<tr>
<td>------</td>
</tr>
<tr>
<td>Control 1</td>
</tr>
<tr>
<td>Control 2</td>
</tr>
<tr>
<td>Control 3</td>
</tr>
<tr>
<td>Control 4</td>
</tr>
<tr>
<td>Control 5</td>
</tr>
<tr>
<td>sAD1</td>
</tr>
<tr>
<td>sAD2</td>
</tr>
<tr>
<td>sAD3</td>
</tr>
<tr>
<td>sAD4</td>
</tr>
<tr>
<td>sAD5</td>
</tr>
<tr>
<td>fAD1</td>
</tr>
<tr>
<td>fAD2</td>
</tr>
<tr>
<td>fAD3</td>
</tr>
</tbody>
</table>

Grading of Aβ42 and 40 deposits: 0 = absent, 1 = few, 2 = moderate, 3 = many, 4 = very many.

sAD indicates sporadic Alzheimer disease; fAD, familial Alzheimer disease; fAD mutations: fAD1, fAD3, amyloid precursor protein (APP), 717Vallle; fAD2, presenilin L381V.

M, male; F, female; PMI, postmortem interval.
FIGURE 1. (A-D) Immunohistochemistry for aquaporin 1 (AQP1) in control brain (A), and brains with sporadic Alzheimer disease (sAD) (B), and familial Alzheimer disease (fAD) (C). There are more numerous AQP1-positive cells in the cerebral cortex of both the sAD and fAD brains versus the controls. (D) Double immunolabeling of AQP1 (brown) and glial fibrillary acidic protein (GFAP) (red) in a case of AD. (E-H) The cortical levels of AQP1 immunoreactivity in both the sAD and fAD groups were significantly higher than in the control group. Data are given as mean ± SD. **, p < 0.01 versus control.
FIGURE 2. (A-I) Double immunofluorescence for aquaporin 1 (AQP1) (A, D, G) and amyloid-β peptide 1–42 (Aβ42) (B, E, H) in the Alzheimer disease (AD) groups (C, F, I: merged images). Cells showing intense AQP1 expression are in contact with classic Aβ42 plaques (A–C). Numerous AQP1-positive cells are present in areas where Aβ42 plaques are sparse (D–F), but are not often observed in areas where such plaques are dense (G–I). (J) Plot of Aβ42 levels and AQP1 levels (in relative fluorescence units) in the sporadic and familial AD groups. Semiquantitative analysis of AQP1/Aβ42 levels in both AD groups revealed a significant negative correlation between the cortical levels of AQP1 and that of Aβ42 ($R^2 = 0.2839$, $p < 0.01$).
observed in the patients with AD. Age-matched controls showed only a few or modest accumulations of Aβ42 deposits and no or only slight Aβ40 deposits (Table).

AQP1 Expression and Its Relationship to Aβ Deposition

AQP1-positive cells were more abundant in the cerebral cortex of both the sAD and fAD groups versus the controls (Figs. 1A–C). Numerous AQP1-positive cells in both AD groups were mainly in the pyramidal cell layers and had the morphologic characteristics of bushy reactive astrocytes, with hypertrophic cell bodies and highly branched processes. Double immunostaining for AQP1 and GFAP showed that these cells coexpressed both molecules (Fig. 1D). The levels of cortical AQP1 IR in both the sAD and fAD groups were significantly greater than in the control group. AQP1 IR in

FIGURE 3. (A–C) Immunohistochemistry for aquaporin 4 (AQP4) in a control brain (A), and in cases of sporadic Alzheimer disease (sAD) (B), and familial Alzheimer disease (fAD) (C). High-power views show subpial or superficial cortical AQP4 immunostaining. (D, E) Double-labeling immunohistochemistry for AQP4 (brown) and glial fibrillary acidic protein (GFAP) (red) in the cortex of AD brains. AD brains showed intense AQP4 expression and GFAP-immunoreactive astrocytes (D) or marked Aβ plaque-like AQP4 expression (E). (F–I) Cortical levels of AQP4 immunoreactivity in both the sAD and fAD groups are significantly greater than in the control group, except for the middle and superior temporal cortices in the fAD group. Data are given as mean ± SD. **, p < 0.01 versus control; *, p < 0.05 versus control.

FIGURE 4. (A–C) Double-labeling immunohistochemistry for aquaporin 4 (AQP4) (brown) and amyloid-β peptide 1–42 (Aβ42) (red) (A) or amyloid-β peptide 1–40 (Aβ40) Aβ40 (red) (B, C) in cases of Alzheimer disease (AD). Numerous Aβ42 or Aβ40 plaques colocalize with intense Aβ plaque-like AQP4 expression (A, C). There are smaller Aβ40-positive deposits within areas of plaque-like AQP4 expression (B, arrows). (D–I) Double immunofluorescence for AQP4 (D, G) and Aβ42 (E) or Aβ40 (H) in the AD groups (F, I: AQP1/Aβ42 or Aβ40 merged images). Classic Aβ42 plaques are devoid of AQP4 immunoreactivity in the dense core but show enhanced AQP4 expression at the margins (D–F, arrowheads). AQP4 immunoreactivity is strong in the interior of primitive Aβ42 or Aβ40 plaques (D–I, arrows) or around areas of smaller Aβ40 deposits (G–I, arrowheads).
each case, expressed as the mean ± SD for the total, inferior, middle, and superior temporal cortices, was 14.2 ± 2.8, 13.2 ± 2.6, 14.2 ± 3.0, and 15.2 ± 2.4 in the control group; 34.0 ± 7.0, 35.4 ± 8.3, 33.5 ± 6.4, and 33.0 ± 6.5 in the sAD group; and 36.0 ± 8.4, 38.4 ± 8.7, 35.0 ± 8.71, and 34.5 ± 8.1 in the fAD group, respectively (Figs. 1E–H).

To confirm the observed relationship between the patterns of AQP1 and Aβ42 expression in AD, we next conducted a double immunofluorescence analysis of AQP1 and Aβ42 in all of the AD cases. AQP1-expressing cells were often localized near Aβ42 plaques in the sAD and fAD cases (Figs. 2A–F), but AQP1-positive astrocytes were not often observed in areas of densely packed Aβ42 plaques (Figs. 2G–I). There were numerous AQP1-positive cells in areas where Aβ42 plaques were sparse (Figs. 2D–F). There were significant negative correlations between the levels of AQP1 and Aβ42 expression when assessed semiquantitatively in the AD groups (Fig. 2J). Similarly, increased AQP1 IR was observed in areas where Aβ40 plaques were sparse (Figure, Supplemental Digital Content 1, Parts A and B, http://links.lww.com/NEN/A361), whereas expression was decreased in Aβ40-rich areas (Figure, Supplemental Digital Content 1, Parts C and D, http://links.lww.com/NEN/A361).

In general, most AQP1-expressing cells were near Aβ40 plaques (Figure, Supplemental Digital Content 1, Parts E–G, http://links.lww.com/NEN/A361). Negative controls, in which incubation with anti-AQP1 antibody had been omitted, showed no IR (data not shown). The epithelial cells of the choroid plexus were intensely labeled with anti-AQP1 antibody (data not shown).

AQP4 Expression and Its Relationship to Aβ Deposition

Cortical AQP4 immunoreactivity was also more intense in both the sAD and fAD groups than in the control group (Figs. 3A–C; Figure, Supplemental Digital Content 2, Parts A–C, http://links.lww.com/NEN/A362). There were 2 prominent patterns of subpial or superficial cortical AQP4 immunoreactivity in the AD groups: intense diffuse AQP4 labeling of the entire neuropil (Fig. 3B) and AQP4 distribution around Aβ plaque-like bodies (Fig. 3C). The latter pattern was more apparent in fAD cases with an amyloid precursor protein mutation than in a case with a presenilin mutation (Table), but this was also seen in some patients with sAD. In the deeper cortical layers of control brains, there was less intense AQP4 immunoreactivity in cells with astrocyte morphology around vessels (Figure, Supplemental Digital Content 2, Part D, http://links.lww.com/NEN/A362). In the AD brains, intense AQP4 expression patterns that resembled astrocytic profiles (Figure, Supplemental Digital Content 2, Part E, http://links.lww.com/NEN/A362) or Aβ plaque-like AQP4 expression (Figure, Supplemental Digital Content 2, Part F, http://links.lww.com/NEN/A362) were observed in the deeper cortical layers. As shown in Figure 3, F to I, the cortical AQP4 IR in both the sAD and fAD groups was significantly greater than that in the control group, except for in the middle and superior temporal cortices in the fAD group. AQP4 IR in each case, expressed as the mean ± SD for the total, inferior, middle, and superior temporal cortices, was 40.9 ± 10.3, 39.3 ± 10.3, 41.7 ± 10.6, and 40.2 ± 12.0 in the control group; 53.1 ± 12.7, 52.6 ± 6.8, 53.4 ± 14.1, and 53.3 ± 16.3 in the sAD group; and 49.9 ± 9.2, 48.9 ± 9.2, 51.7 ± 8.9, and 49.3 ± 10.4 in the fAD group. Double labeling using both anti-AQP4 and anti-GFAP antibodies clearly showed that areas of AQP4 expression coincided with areas of GFAP expression in the cortex of the control group (data not shown). In contrast, AQP4 immunoreactivity was clearly observed in both astrocytosis and Aβ plaque-like structures in the AD groups (Figs. 3D, E).

We then conducted double-labeling immunohistochemistry for AQP4 and Aβ42 or Aβ40 in the AD cases. As expected, numerous Aβ42 or Aβ40 plaques were colocated with intense expression of Aβ plaque-like AQP4 (Figs. 4A–C), and small Aβ40-positive deposits were detected within some areas of Aβ plaque-like AQP4 expression (Fig. 4B). To examine the expression patterns of AQP4 in both Aβ42 and Aβ40 plaques in detail, we conducted a double-immunofluorescence study of AQP4 and Aβ42 or Aβ40 in the AD groups. A noteworthy finding was that classic Aβ42 plaques were devoid of AQP4 immunoreactivity in the dense core, although AQP4 expression was enhanced at the marginal rim (Figs. 4D–F, arrowheads). Primitive Aβ42 or Aβ40 plaques showed strong AQP4 immunoreactivity in the interior (Figs. 4D–I, arrows) or around areas of light Aβ deposition (Figs. 4G–I, arrowheads).

Lastly, we investigated the expression of AQP4 around Aβ40-positive vessels, that is, larger vessels and capillaries with CAA. Intriguingly, various degrees of AQP4 expression were noted around Aβ40-positive vessels (Figs. 5B–F). Intense AQP4 immunoreactivity was observed around larger vessels showing slight to moderate Aβ40 positivity (Figs. 5B, C) in comparison to that around Aβ40-negative vessels (Fig. 5A). Loose AQP4 reaction products with irregular perivascular spaces distributed around larger vessels with intense Aβ40 positivity were also observed, in contrast to Aβ40 plaques associated with massively enhanced AQP4 expression (Fig. 5D). In addition, AQP4 expression around capillaries with CAA tended to be more intense with dysorphic changes, that is, Aβ40 spreading into the neuropil (Figs. 5E, F).

DISCUSSION

The marked variation of AQP expression in AD brains observed in the present study raises the possibility that AQP1-positive reactive astrocytes may pathologically modify the deposition of Aβ and that Aβ deposits may alter the astrocytic expression of AQP4 during the development of AD. In both the sAD and fAD groups, many AQP1-positive reactive astrocytes were close to deposits of Aβ42 or Aβ40, whereas AQP1 immunoreactivity in astrocytes was often reduced in areas of intense Aβ immunoreactivity, suggesting that AQP1 expression is associated with transition to an Aβ42- or Aβ40-rich state. Other noteworthy features included the presence of intense Aβ plaque-like AQP4 expression associated with Aβ42- or Aβ40-positive SPs and various degrees of AQP4 expression around Aβ40-positive vessels. There were no apparent differences in AQP1 expression between the sAD and fAD groups, although fAD cases with amyloid...
FIGURE 5. (A–F) Double-labeling immunohistochemistry for aquaporin 4 (AQP4) (brown) and amyloid β peptide 1–40 (Aβ40, red) in the Alzheimer disease (AD) groups with moderate or extensive Aβ40 deposits. Note the location of AQP4 expression around Aβ40-positive vessels. Strong AQP4 immunoreactivity is evident around slightly Aβ40-positive larger vessels (B) or moderately Aβ40-positive larger vessels (C) in comparison to the immunoreactivity around Aβ40-negative vessels (A). (D) Loose fibrous expression of AQP4 around intensely Aβ40-positive larger vessels (arrows) and intense expression of AQP4 around areas with a high Aβ40 plaque burden (arrowheads). (E, F) AQP4 expression around cerebral amyloid angiopathy (CAA). Mild expression of AQP4 around capillary CAA showing slight or absent dyshoric change (E). Intense expression of AQP4 around capillary CAA with dyshoric change (F).
precursor protein mutation, but not a case with presenilin mutation, seemed to show more widespread Aβ plaque-like AQP4 expression than sAD cases. Because of the small number of fAD or sAD cases showing Aβ plaque-like AQP4 expression, we were unable to perform statistical analysis to clarify this issue.

Our present observations suggest that AQP1-expressing astrocytes accumulate at sites of Aβ42 or Aβ40 deposition, where they attempt to take up and degrade the Aβ (26). We consider that during the development of AD pathology, AQP1-expressing astrocytes might contribute, at least temporarily, to a reduction in local SP formation. Although the close relationship between Aβ plaques and microglial cells has been extensively studied, the role of astrocytes in Aβ plaque processing and metabolism is unclear (7, 8, 10, 27). However, it has been suggested that astrocytes have an important role in maintaining Aβ homeostasis in the AD brain. Indeed, large amounts of Aβ have been observed in activated astrocytes in human AD brain (1, 7), and some studies have shown that astrocytes can internalize Aβ both in vitro and ex vivo (6, 9, 11, 27). Furthermore, the amount of Aβ accumulated by astrocytes has been shown to correlate with the severity of AD-associated neuropathology (27), thus strengthening the view that astrocytes are key mediators of Aβ pathology. Although some studies have noted that a subpopulation of activated astrocytes express an Aβ-degrading enzyme that may play a role in Aβ clearance (6, 9, 28), the AQP1-expressing astrocytes demonstrated in the present study might also play a crucial role in SP formation.

In addition, astrocytic AQP1 expression in the AD brain seems to be important for enhancement of astrocyte migration. Cell migration generally involves the formation of membrane protrusions (lamellipodia and membrane ruffles) at the leading edge of the cell. In Chinese hamster ovary cells, exogenously expressed AQP1 is localized at lamellipodia (29), leading to the production of extensive protrusions and accelerated cell migration. Accordingly, it can be hypothesized that the expression of AQP1 observed in our AD cases might play a role in enhancing the ability of astrocytes to migrate toward Aβ plaques. This would also imply that astrocytes might lose their AQP1 expression in the presence of Aβ or other factors in areas with a dense Aβ42 burden. In other words, Aβ42-overburdened astrocytes lacking AQP1 expression might be involved in a process that will result in the formation of astrocyte-derived plaques (7, 30).

In general, although AQP1 is constitutively expressed in the choroid plexus, several studies have demonstrated that astrocytes elsewhere in the brain can express AQP1 under certain pathologic conditions, such as Creutzfeldt-Jacob disease (31), astrocytoma (22), epilepsy (32), and other processes involving astrocytic proliferation (33–36). However, it is still unclear why astrocytic AQP1 expression is upregulated in these disorders when there is no accompanying accumulation of Aβ. Using an Aβ11–25 antibody reactive with both Aβ42 and Aβ40 antigens, Misawa et al (13) have shown that the number of Aβ/AQP1–immunoreactive plaques in AD was significantly higher than in non-AD conditions such as Parkinson disease, multiple-system atrophy, amyotrophic lateral sclerosis, and some other diseases. In AD, increment of Aβ/AQP1–immunoreactive plaques may be a neuropathologic feature that distinguishes it from other neurodegenerative diseases.

Another conspicuous feature in the present study was the expression of AQP4 at SPs or around areas of CAA. Moftakhar et al (14) also studied the distribution of AQP4 plaque-like bodies in human AD brains, but they did not differentiate between Aβ42 and Aβ40 with regard to the respective association of each with AQP4 and did not describe the morphology of AQP4 plaque-like expression in detail. We found that intense Aβ plaque-like expression of AQP4 was closely associated with Aβ42 plaques and that mature SPs involving Aβ40 or dense-cored Aβ plaques lacked internal expression of AQP4. The distribution of AQP4 expression around SPs in the present study suggests that the AQP4 may play a key role in SP formation in AD. It is considered that the amyloid in the cores of classic plaques is older than that in primitive plaques and that the cores are surrounded by a halo of younger amyloid (37). Thus, the expression of AQP4 in SPs seems to occur during early Aβ deposition, whereas AQP4 downregulation seems to occur in the later stage of Aβ plaque formation.

We also noted alterations of AQP4 expression around larger vessels or capillaries affected by CAA; AQP4 expression seemed to vary depending on the severity of CAA. In general, Aβ infiltrates all layers of the vessel wall with progression of CAA, and intracortical vessels including capillaries can show additional spread of Aβ into the surrounding neuropil (so-called dyshoric change) (38, 39). In addition, many studies have shown that vascular Aβ in CAA is predominantly composed of Aβ40 (1, 4, 38), and our findings in CAA in the present series are in accord with those reports. Two studies have reported the changes in AQP4 expression associated with CAA affecting larger vessels (14, 40), and we observed some differences in the distribution of AQP4 immunoreactivity around areas of mild to moderate, or marked, Aβ40 deposition associated with dyshoric change in larger vessels or capillaries. These findings suggest that Aβ-laden blood vessels do interact with astrocytes during CAA progression. In particular, the latter pattern of AQP4 expression around areas of marked Aβ40 deposition is characterized morphologically by glial scar formation (16, 41). In the presence of dyshoric vascular Aβ deposition, clusters of activated microglia and astrocytes have been observed in perivascular areas (39), and upregulation of AQP4 in astrocytes has been found in various inflammatory lesions (42). The inflammatory reaction related to CAA with dyshoric change seems to give rise to enhancement of AQP4 immunoreactivity around areas of CAA.

In summary, we have demonstrated marked changes in the expression of AQP1 and AQP4 in relation to SPs or CAA in human brains affected by AD. Although the number of cases examined was limited, we obtained largely consistent observations that allow us to propose a model for the relationship between AQP and Aβ. Further studies will be needed to verify the proposed mechanistic link between AQP and the process of Aβ pathology in AD and to clarify the relationship between AQP-mediated water balance and neurodegenerative process.
ACKNOWLEDGMENT
The authors thank Junko Takasaki and Chieko Tanda for their technical assistance.

REFERENCES