Hippocampal ProNGF Signaling Pathways and β-Amyloid Levels in Mild Cognitive Impairment and Alzheimer Disease

Elliott J. Mufson, PhD, Bin He, MD, Muhammad Nadeem, MD, Sylvia E. Perez, PhD, Scott E. Counts, PhD, Sue Leurgans, PhD, Jason Fritz, PhD, James Lah, MD, Stephen D. Ginsberg, PhD, Joanne Wu, MS, and Stephen W. Scheff, PhD

Abstract
Hippocampal precursor of nerve growth factor (proNGF)/NGF signaling occurs in conjunction with β-amyloid (Aβ) accumulations in Alzheimer disease (AD). To assess the involvement of this pathway in AD progression, we quantified these proteins and their downstream pathway activators in postmortem tissues from the brains of subjects with no cognitive impairment (NCI), mild cognitive impairment (MCI), and AD using immunoblotting and ELISA. Hippocampal proNGF was significantly greater in AD cases compared with those in NCI and MCI cases. TrkA was significantly reduced in MCI compared with those in NCI and AD, whereas p75 neurotrophin receptor, sortilin, and neurotrophin receptor homolog 2 remained stable. Akt decreased from NCI to MCI to AD, whereas phospho-Akt and phospho-Akt–to–Akt ratio were elevated in AD compared with those in MCI and NCI. No differences were found in phospho-Erk, Erk, or their ratio across groups. Although c-Jun kinase (JNK) remained stable across groups, phospho-JNK and the phospho-JNK–to–JNK ratio increased significantly in AD compared with those in NCI and MCI. Expression levels of Aβ40–40, Aβ41–42, and Aβ40–42 ratio were stable. Statistical analysis revealed a strong positive correlation between proNGF and phospho-JNK, although only proNGF was negatively correlated with cognitive function and only TrkA was negatively associated with pathologic criteria. These findings suggest that alterations in the hippocampal NGF signaling pathway in MCI and AD favor proNGF-mediated proapoptotic pathways, and that this is independent of Aβ accumulation during AD progression.

Key Words: Alzheimer disease, Amyloid, Mild cognitive impairment, Nerve growth factor, ProNGF, Protein kinases, TrkA.

INTRODUCTION
The hippocampus, a critical node of the episodic memory network, is one of the first brain sites to develop neurodegenerative changes in living individuals at risk for dementia and those with a clinical diagnosis of mild cognitive impairment (MCI), a prodromal stage of Alzheimer disease (AD) (1, 2). Despite the expression of early degenerative events, the hippocampus displays remarkable evidence for neuroplasticity during the prodromal phase(s) of AD. For example, the activity of choline acetyltransferase, the rate-limiting enzyme for acetylcholine synthesis, is increased in the hippocampus of people with MCI (3, 4), suggesting that this region is resilient to the stress of disease onset via increased input from cholinergic neurons of the septal/diagonal band. Because damage to this pathway plays a key role in memory and attentional dysfunction during AD progression (5–7), understanding the signaling events that underlie septohippocampal plasticity is crucial for delineating the mechanisms that cause reactive synaptogenesis in this region and may provide translational information for the development of novel treatment strategies to promote cholinergic neuroplasticity over the extent of AD.

A central concept underlying the integrity of the cholinergic septohippocampal projection system is the observation that mature nerve growth factor (NGF), its pro form (proNGF) (8), and their cognate receptors play a crucial role in the function of this pathway, and that their dysregulation contributes to degeneration of this projection system in AD (7). Mature NGF primarily binds to the TrkA receptor, which stimulates survival signal transduction pathways (5, 9). However, the binding of p75 neurotrophin receptor (p75NTR) to proNGF has multiple functions, including proapoptotic and/or cell death actions (10), which are dependent on its interaction with coreceptor chaperones, including sortilin and neurotrophin receptor homolog 2 (NRH2) (8, 10–14). Mature NGF/proNGF receptor binding activates downstream protein kinase signaling pathways involved in pro–cell survival and pro–cell death actions (15–18), including Erk and protein kinase B/Akt, which activate intracellular events responsible for neuronal survival and neurite differentiation [16, 19], as well as the c-Jun kinase (JNK)–mediated proapoptotic pathway (20). Although data suggest a close relationship between β-amyloid (Aβ) and NGF receptor signaling in AD (21, 22), it remains to be...
determined whether alterations in hippocampal proNGF signaling track with changes in Aβ levels during the onset of AD. In fact, most studies on proNGF/NGF signaling have been performed on cellular or animal models of cerebral amyloid overexpression not on bona fide human AD brain tissues.

To characterize whether AD disease progression affects the expression level of these cell survival and proapoptotic pathways within the hippocampus relative to A deposition (23), we examined tissue harvested from people who died with a premortem clinical diagnosis of no cognitive impairment (NCI), MCI, or AD using Western blot and ELISA technology and correlated these findings with cognitive and neuropathologic variables.

**MATERIALS AND METHODS**

**Subjects**

This study included 37 cases with an antemortem clinical diagnoses of NCI (n = 11, 6 female/5 male; mean age at death ± SD, 83.4 ± 4.6 years; Mini-Mental State Examination [MMSE] score, 27.6 ± 1.4), MCI (n = 13, 8 female/5 male; mean age at death ± SD, 85.4 ± 4.0 years; MMSE score, 27.5 ± 2.5), and AD (n = 13, 7 female/6 male; mean age at death ± SD, 87.7 ± 5.8 years; MMSE score, 19.9 ± 6.4) from the Rush Religious Order Study (RROS) (Table 1) (24–26). Each participant had agreed to an annual detailed premortem clinical evaluation and brain donation at the time of death. An additional 7 NCI (6 female/1 male; mean age at death ± SD, 83.7 ± 6.4 years; MMSE score, 28.3 ± 2.4), 5 MCI (3 female/2 male; mean age at death ± SD, 87.4 ± 3.9 years; MMSE score, 25.8 ± 3.5), and 5 AD (2 female/3 male; mean age at death ± SD, 84.8 ± 8.0 years; MMSE score, 13.2 ± 7.9) cases were obtained from the University of Kentucky ADC Brain Bank and used to measure NRH2 protein levels, which were only available in a subset of the RROS cases (5 NCI, 4 MCI, and 6 AD). The human research committees of Rush University Medical Center and the University of Kentucky approved this study. Written informed consent for research and autopsy was obtained from study participants or their family/guardians.

**Clinical and Neuropathologic Evaluation**

Details of the clinical evaluation and criteria for diagnosis of AD and MCI in the RROS cohort have been published elsewhere (24, 26, 27). There was an average time of

---

**TABLE 1. RROS Clinical, Demographic, and Neuropathologic Characteristics by Diagnosis Category**

<table>
<thead>
<tr>
<th>Clinical Diagnosis</th>
<th>NCI (n = 11)</th>
<th>MCI* (n = 13)</th>
<th>AD (n = 13)</th>
<th>Total (n = 37)</th>
<th>p</th>
<th>Pairwise Comparison</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age at death, mean ± SD (range), years</td>
<td>83.4 ± 4.6 (76–93)</td>
<td>85.4 ± 4.0 (79–92)</td>
<td>87.7 ± 5.8 (76–98)</td>
<td>85.6 ± 5.1 (76–98)</td>
<td>0.1†</td>
<td>—</td>
</tr>
<tr>
<td>Male, n (%)</td>
<td>5 (45)</td>
<td>5 (38)</td>
<td>6 (46)</td>
<td>16 (43)</td>
<td>1.0‡</td>
<td>—</td>
</tr>
<tr>
<td>Years of education, mean ± SD (range)</td>
<td>17.5 ± 4.7 (10–25)</td>
<td>17.7 ± 3.8 (10–25)</td>
<td>19.0 ± 3.3 (14–26)</td>
<td>18.1 ± 3.9 (10–26)</td>
<td>0.8†</td>
<td>—</td>
</tr>
<tr>
<td>ApoE ε4 allele present, n (%)</td>
<td>0</td>
<td>5 (38)</td>
<td>4 (31)</td>
<td>9 (24)</td>
<td>0.058‡</td>
<td>—</td>
</tr>
<tr>
<td>MMSE score, mean ± SD (range)</td>
<td>27.6 ± 1.4 (26–30)</td>
<td>27.5 ± 2.5 (22–30)</td>
<td>19.9 ± 6.4 (9–28)</td>
<td>24.9 ± 5.5 (9–30)</td>
<td>0.0002† (NCI, MCI) &gt; AD</td>
<td></td>
</tr>
<tr>
<td>Global Cognitive Score, mean ± SD (range)</td>
<td>0.5 ± 0.2 (0.2–0.8)</td>
<td>0.2 ± 0.3 (−0.5 to 0.8)</td>
<td>−0.5 ± 0.3 (−1.2 to −0.1)</td>
<td>0.0 ± 0.5 (−1.2 to 0.8)</td>
<td>&lt;0.0001† NCI &gt; MCI &gt; AD</td>
<td></td>
</tr>
<tr>
<td>Episodic memory z score, mean ± SD (range)</td>
<td>0.8 ± 0.3 (0.3–1.4)</td>
<td>0.4 ± 0.3 (−0.2 to 0.8)</td>
<td>−0.6 ± 0.7 (−2.0 to 0.6)</td>
<td>0.1 ± 0.8 (−2.0 to 1.4)</td>
<td>&lt;0.0001† NCI &gt; MCI &gt; AD</td>
<td></td>
</tr>
<tr>
<td>Postmortem interval, mean ± SD (range), hours</td>
<td>5.7 ± 3.3 (1.0–12.4)</td>
<td>5.6 ± 2.5 (2.0–10.6)</td>
<td>4.2 ± 1.6 (1.5–7.3)</td>
<td>5.1 ± 2.5 (1.0–12.4)</td>
<td>0.4†</td>
<td>—</td>
</tr>
</tbody>
</table>

Distribution of Braak scores

I/II | 4 | 2 | 1 | 7 |
III/IV | 6 | 8 | 8 | 22 | 0.14† | — |
V/VI | 1 | 3 | 4 | 8 |

NIA-Reagan diagnosis

Likelihood of AD

No AD | 0 | 0 | 0 | 0 |
Low | 6 | 5 | 1 | 12 | 0.042† NCI < AD |
Intermediate | 5 | 5 | 9 | 19 |
High | 0 | 3 | 3 | 6 |

CERAD diagnosis

No AD | 3 | 4 | 0 | 7 |
Possible | 2 | 0 | 0 | 2 | 0.0076† NCI < AD |
Probable | 6 | 6 | 7 | 19 |
Definite | 0 | 3 | 0 | 9 |

*Four of 13 MCI cases were amnestic MCI.
†Kruskal-Wallis test with Bonferroni correction for multiple comparisons.
‡Fisher exact test with Bonferroni correction for multiple comparisons.
approximately 8 months between death and the last clinical and neuropsychological evaluation, which included the MMSE and a battery of 19 cognitive tests. A Global Cognitive Score (GCS), a composite z score that indicates overall cognitive function, was compiled from the 19 tests. An episodic memory z score, which is more specific for hippocampal function, was also computed based on 7 of the tests. Among the RROS MCI cases, 4 were amnestic MCI, whereas all MCI cases from the University of Kentucky ADC were amnestic MCI based on a clinical dementia rating score of 0.5 (28). For both populations, a final clinical diagnosis was assigned after consensus conferences of neurologists and neuropsychologists who reviewed all relevant data and information collected. Neuropathologic diagnosis was performed as previously described (24, 26, 27) and included Braak staging of neurofibrillary tangles (NFTs) (29), the National Institute on Aging (NIA)–Reagan criteria (30), and recommendations of the Consortium to Establish a Registry for Alzheimer’s Disease (CERAD) (31). Subjects with pathologic findings other than AD (e.g. stroke, Parkinson disease, Lewy body dementia) were excluded from the study. None of the cases examined were treated with anticholinesterase inhibitors. Clinical, demographic, and neuropathologic details of the RROS cases are presented in Table 1. Tissue and clinical information is under the protection of the Health Information Privacy Administration rules.

Tissue Samples

Hippocampal samples were dissected free of white matter at autopsy in the coronal plane at the level of lateral geniculate nucleus (which included all layers and cell types of this structure) on dry ice to prevent thawing of the tissue and were frozen at −80°C until the time of biochemical assay. Frozen hippocampus was homogenized (150 mg/mL) on ice and were divided into 2 aliquots. One aliquot was added to a homogenization buffer (250 mmol/L sucrose, 20 mmol/L Tris base) containing protease inhibitors (100 μg/mL) and divided into 2 aliquots; one was used for the Aβ ELISA, and the second aliquot was diluted to 10 mg tissue/mL with potassium phosphate–buffered saline (pH 7.4) for Western blotting.

Antibodies

All antibodies are commercially available, and their specificity has been characterized (32–34) (Table 2). The antibodies included proNGF polyclonal antisera (1:50, H-20; Santa Cruz Biotechnology, Santa Cruz, CA); purified anti-TrkA rabbit polyclonal affinity–purified antibodies (1:100; Fitzgerald, Acton, MA); anti-NR2H2 (1:1000), anti-sorcinil (1:1000), and anti-p75NTR (1:500) obtained from Abcam (Cambridge, MA); and anti-Akt (1:1000), phospho-Akt (Ser473) (1:1000), p44/p42 MAPK (Erk1/2) (1:1000), phospho-p44/p42 MAPK (Erk1/2) (Thr202/Tyr 204) (E10) mouse monoclonal antibody (mAb) (1:2000), SAPK/JNK (56G8) rabbit mAb (1:1000), and phospho-SAPK/JNK (Thr183/Tyr185) (81E11) rabbit mAb (1:2000) obtained from Cell Signaling Technology (Danvers, MA). The loading control β-tubulin mAb (1:4000) was from Millipore (Bedford, MA).

Quantitative Immunoblotting

Briefly, sample proteins were denatured in sodium dodecyl sulfate (SDS) loading buffer to a final concentration of 5 mg/mL. Proteins (50 μg/sample) were separated by 8% to 16% or 7.5% SDS polyacrylamide gel electrophoresis (Lanza, Rockland, ME) and transferred to polyvinylidene fluoride membranes (Immobilon P; Millipore) electrophoretically, as described previously (35–37). Membranes were first blocked in Tris-buffered saline (TBS)/0.05% Tween 20/5% milk for 60 minutes at room temperature (RT), with the exception of proNGF, which was blocked in 0.5× TBS/0.05% milk for 20 minutes. Phospho-JNK, phospho-Akt, and phospho-Erk were blocked in TBS/0.05% Tween 20/3% bovine serum albumin for 60 minutes. Primary antibodies

### Table 2. Antibodies

<table>
<thead>
<tr>
<th>Antibodies</th>
<th>Epitope or Immunogen</th>
<th>Dilution</th>
<th>Company; Catalog No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>ProNGF</td>
<td>Rabbit polyclonal to NGF (H-20)</td>
<td>N-terminus of NGF</td>
<td>1:50</td>
</tr>
<tr>
<td>TrkA receptor</td>
<td>Rabbit polyclonal to TrkA</td>
<td>External domain of TrkA</td>
<td>1:100</td>
</tr>
<tr>
<td>p75NTR receptor</td>
<td>Rabbit polyclonal to p75 NGF receptor</td>
<td>aa' 250-350 of p75NTR</td>
<td>1:50</td>
</tr>
<tr>
<td>Sortilin</td>
<td>Rabbit polyclonal to sortilin</td>
<td>C-terminus of sortilin</td>
<td>1:1000</td>
</tr>
<tr>
<td>NR2H2</td>
<td>Rabbit polyclonal to NR2H2</td>
<td>N-terminus of NR2H2 (discontinued)</td>
<td>1:1000</td>
</tr>
<tr>
<td>Akt</td>
<td>Rabbit polyclonal to Akt</td>
<td>C-terminus of Akt</td>
<td>1:1000</td>
</tr>
<tr>
<td>Phospho-Akt</td>
<td>Rabbit polyclonal to phospho-Akt</td>
<td>Phospho-Ser 473</td>
<td>1:1000</td>
</tr>
<tr>
<td>JNK</td>
<td>Rabbit polyclonal to SAPK/JNK (56G8)</td>
<td>Human JUNK2/MBP</td>
<td>1:1000</td>
</tr>
<tr>
<td>Phospho-JNK</td>
<td>Rabbit polyclonal to phospho SAPK/JNK (81E11)</td>
<td>Phospho-Thr 183, phospho-Tyr 185</td>
<td>1:2000</td>
</tr>
<tr>
<td>Erk</td>
<td>Rabbit polyclonal to p44/42 MAPK (Erk1/2)</td>
<td>Erk1 (p44), Erk2 (p42)</td>
<td>1:1000</td>
</tr>
<tr>
<td>Phospho-Erk</td>
<td>Mouse monoclonal to phospho p44/42 MAPK (Erk1/2) (E10 clone)</td>
<td>Phospho-Thr202, phospho-Tyr204</td>
<td>1:2000</td>
</tr>
<tr>
<td>Beta-tubulin</td>
<td>Mouse monoclonal to (KMX-1 clone)</td>
<td>Myxomycetes beta-tubulin</td>
<td>1:4000</td>
</tr>
</tbody>
</table>
were added to the blocking buffer. After a 60-minute incubation with primary antibodies at RT, membranes were incubated overnight at 4°C. After 3 washes in TBS/0.05% Tween 20, the membranes were incubated for 1 hour at RT with horseradish peroxidase-conjugated goat anti-mouse immunoglobulin G secondary antibody (1:4000; Pierce, Rockford, IL) or horseradish peroxidase-conjugated goat anti-rabbit immunoglobulin G secondary antibody (1:4000; Bio-Rad, Hercules, CA). Immunoreactive proteins were visualized by enhanced chemiluminescence (Pierce) on a Kodak Image Station 440CF (Perkin-Elmer, Wellesley, MA). Bands were quantified using Kodak 1D image analysis software. Immunoreactive signals of target proteins were normalized to β-tubulin signals for quantitative analysis. Previously, we verified by immunoblotting, Coomassie blue staining, and densitometry that β-tubulin levels were unchanged in samples from the same clinical diagnostic cohort examined in the present study (36), which is consistent with findings by other groups (38, 39). Therefore, β-tubulin levels were used as the internal control for protein loading. Each sample was analyzed 3 times in independent experiments.

Sequential Amyloid Extraction and Sandwich ELISA for Aβ40/Aβ42

The ELISA used for Aβ40/Aβ42 levels is a modification of a previously described procedure (34). Briefly, hippocampal homogenates were diluted to 10 mg wet weight/mL in homogenization buffer containing protease inhibitors. One milligram of crude homogenate was sonicated (30 seconds at 40% amplification with a one-eighth inch tapered microtip; Ultrasonic Processor, Fisher Scientific, Pittsburgh, PA) in 10% SDS (final concentration, 2% SDS) and centrifuged at 4°C for 1 hour at 100,000 x g (Optima TLX Ultracentrifuge; Beckman-Coulter, Fullerton, CA). Supernatant was collected (SDS-soluble fraction), and the pellet was resuspended in an equal volume of 70% formic acid prepared in water and sonicated again as described above. Formic acid fractions were neutralized by 1:20 dilution in 1.0 mol/L Tris base (pH 11.3). The SDS fractions were diluted at least 1:50, and neutralized formic acid fractions were further diluted if needed in ELISA diluent buffer (50 mmol/L Tris base, 150 mmol/L NaCl, 0.5% NP-40, 0.5% deoxycholate, 0.1 mg/mL phenylmethylsulfonyl fluoride, protease inhibitor cocktail, pH 7.4). Fractions were stored at -80°C until ELISA and were not subjected to more than 1 freeze-thaw cycle. Sandwich ELISAs specific for human Aβ40 and Aβ42 species (EZBRAIN40, EZBRAIN42; EMD Millipore Corporation, Billerica, MA) were performed in duplicate to measure Aβ40/Aβ42 levels according to the manufacturer’s instructions. Plates were read at 450 nm on a Spectra Max Plus plate reader (Molecular Devices, Sunnyvale, CA).

Statistical Analysis

Summary statistics were provided for each variable included in the analyses (mean ± SD, range, frequency, or percentage); β-amyloid data were transformed by taking the natural logarithm to reduce data skewness. Clinical, demographic, and neuropathologic characteristics were compared across the clinically defined groups of NCI, MCI, and AD by the Kruskal-Wallis test or Fisher exact test (40), as were the Western blot protein values and ELISA values for β-amyloid. Ad hoc analyses were performed with Bonferroni-type correction for multiple comparisons. Associations between biochemical measures, demographic and clinical characteristics, and neuropathology scores were assessed by Spearman rank correlation (40). Nonparametric methods were used because they are more robust to the effect of outliers and the non-normality in the data. Additional regression analyses were performed as needed to explore the potential confounding effects of clinical variables such as age (41). Because of the large number of proteins examined in this study, factor analyses (42) and biologic rationale were used to guide us in our interpretation of the results; our focus was on the identification of consistent patterns in the data rather than individual comparisons or correlations. Statistical analyses were performed using the SAS software, version 9.2 (SAS Institute Inc.). The level of statistical significance was set at 0.05 (2-sided). Results with 0.01 ≤ p < 0.05 were interpreted with caution.

RESULTS

Case Demographics

The clinical diagnostic groups did not differ by age, sex, years of education, or postmortem interval (Table 1). There were more subjects with an ApoE 4 allele in the MCI (38%) and AD (31%) groups than in the NCI group (0%) (Table 1). The AD cases had lower MMSE scores compared with both MCI and NCI cases (p < 0.0001), whereas the latter 2 groups did not differ statistically (Table 1). The GCS and episodic memory z scores were significantly lower in AD versus MCI and in MCI versus NCI groups. Subjects in the different clinical diagnostic groups displayed considerable heterogeneity with respect to pathologic diagnostic criteria. Pathologic examination of study subjects revealed that 64% of NCI cases, 85% of MCI cases, and 92% of AD cases were classified as Braak stages III to VI. Using NIA-Reagan criteria, 45% of NCI, 62% of MCI, and 92% of AD cases were classified as intermediate to high likelihood of AD (Table 1). For CERAD diagnosis, 55% of NCI, 69% of MCI, and 100% of AD cases received a diagnosis of probable/definite AD. Statistical analysis revealed a significant difference between the NCI and AD groups for NIA-Reagan (p = 0.042) and CERAD (p = 0.0076) diagnoses, but not for Braak staging.

Hippocampal ProNGF, TrkA, p75NTR, Sortilin, and NRH2 Receptor Levels

The mean hippocampal proNGF levels were significantly elevated in AD versus NCI and MCI (by 57% and 41%, respectively; p = 0.004; Fig. 1A). By contrast, mean hippocampal TrkA protein levels were significantly reduced in MCI versus NCI and AD (by 27% and 36%, respectively; p = 0.014; Fig. 1B). The expression levels of TrkA in NCI and AD were comparable. There were no significant modifications in hippocampal p75NTR (Fig. 1C), sortilin, or NRH2 (Fig. 1D) expression levels among the 3 clinical groups (Table 3).

© 2012 American Association of Neuropathologists, Inc.
There were no significant modifications in the expression levels of hippocampal total Erk, phospho-Erk, or their ratio among the 3 clinical groups (Table 3). On the other hand, total Akt levels were reduced from NCI to MCI to AD, whereas phospho-Akt expression levels seemed to be elevated in AD (by ~33%) compared with those in MCI and NCI (Figs. 2A, B). The ratio of phospho-Akt to Akt was then found to be significantly increased in AD (p = 0.036), although only the difference between AD and MCI reached statistical significance (Fig. 2C).

Although total mean JNK levels remained stable across clinical groups (Table 3; Fig. 3A), phospho-JNK was significantly increased by approximately 55% in AD versus NCI and MCI (Fig. 3B; p = 0.0006). The ratio of phospho-JNK to JNK was also similarly increased in AD versus NCI and MCI (~55%; p = 0.016; Fig. 3C).

Soluble and insoluble derived Aβ1-40, Aβ1-42, and their ratios remained stable across NCI, MCI, and AD groups.
Based on the current findings, it is crucial to determine whether the biologic actions of proNGF isolated from MCI brain would induce apoptosis similar to that seen in AD samples or whether it acts more like proNGF in controls.

### Hippocampal ProNGF Levels During Disease Progression

Although proNGF binds to p75
\(^{NTR}\) and its coreceptors sortilin and NRH2, we found no modifications in expression levels of these proteins between clinical groups, which are similar to previous findings in the AD hippocampus (47, 48) and the MCI cortex (49). Sortilin and NRH2 are p75
\(^{NTR}\)-binding partners, and blocking them precludes the binding of proNGF to p75
\(^{NTR}\), and prevents cell death (9, 10, 13, 50, 51). In this regard, increasing levels of proNGF and stable levels of p75
\(^{NTR}/\)sortilin/NRH2 complexes may favor pro-apoptotic signaling in the hippocampus in AD. Interestingly, in vivo models indicate that proNGF is neurotoxic for aged, but not young, NGF-responsive basal forebrain neurons and that blockade of sortilin rescues from proNGF-induced cell death (47, 48). Together, these data suggest a molecular link in the brain between normal aging and AD through the regulation of proNGF and its cognate receptors and coagonists. In addition, increased proNGF levels also drive alterations in metabolic enzymes, such as plasmin and matrix metalloprotease 9 (52), which regulate the maturation and degradation of mature NGF in the extracellular space and are decreased and increased, respectively, in parallel with the accumulation of proNGF in MCI and AD brains (53). In fact, pharmacologically induced chronic failure in extracellular NGF maturation leads to mature NGF reduction, proNGF accumulation, cholinergic degeneration, and cognitive impairment in rats (54). In the present study, the observed negative correlation between hippocampal proNGF and cognitive function further demonstrates the importance of

### DISCUSSION

Previous studies suggest that mature NGF levels are unchanged in the AD hippocampus compared with those in aged controls (43, 44), but recent biochemical studies indicate that proNGF is the major form found in the human brain (8). Here we demonstrate a significant increase in hippocampal proNGF expression levels in AD but not in MCI. Notably, proNGF levels were not modified in the MCI hippocampus compared with its upregulation in the neocortex in MCI and AD subjects (33, 45), suggesting that cholinergic forebrain projection groups respond differently during the onset of AD. Interestingly, proNGF isolated from AD cerebral cortex has been shown to induce apoptosis in neuronal cell cultures via an interaction with the p75
\(^{NTR}\) receptor by a mechanism that is dependent on γ-secretase shedding of the receptor, whereas proNGF isolated from control brain samples was not able to induce apoptosis (46).

### TABLE 3. Summary of Hippocampal Protein Levels by Diagnosis Category

<table>
<thead>
<tr>
<th></th>
<th>NCI (n = 11)</th>
<th>MCI (n = 13)</th>
<th>AD (n = 13)</th>
<th>Total (n = 37)</th>
<th>p*</th>
<th>Pairwise Comparison*</th>
</tr>
</thead>
<tbody>
<tr>
<td>ProNGF</td>
<td>0.41 ± 0.10</td>
<td>0.37 ± 0.09</td>
<td>0.58 ± 0.15</td>
<td>0.46 ± 0.15</td>
<td>0.004 (NCI, MCI) &lt; AD</td>
<td></td>
</tr>
<tr>
<td>TrkA</td>
<td>0.64 ± 0.15</td>
<td>0.47 ± 0.17</td>
<td>0.74 ± 0.31</td>
<td>0.62 ± 0.25</td>
<td>0.014 (NCI, AD) &gt; MCI</td>
<td></td>
</tr>
<tr>
<td>Phospho-Erk</td>
<td>0.08 ± 0.02</td>
<td>0.10 ± 0.05</td>
<td>0.09 ± 0.05</td>
<td>0.09 ± 0.04</td>
<td>0.22</td>
<td></td>
</tr>
<tr>
<td>Erk</td>
<td>0.82 ± 0.22</td>
<td>0.86 ± 0.29</td>
<td>0.90 ± 0.25</td>
<td>0.86 ± 0.25</td>
<td>0.7</td>
<td></td>
</tr>
<tr>
<td>Akt</td>
<td>1.46 ± 0.22</td>
<td>1.37 ± 0.38</td>
<td>1.29 ± 0.39</td>
<td>1.37 ± 0.34</td>
<td>0.3</td>
<td></td>
</tr>
<tr>
<td>Akt ratio</td>
<td>0.20 ± 0.08</td>
<td>0.20 ± 0.08</td>
<td>0.29 ± 0.12</td>
<td>0.23 ± 0.10</td>
<td>0.056 MCI &lt; AD</td>
<td></td>
</tr>
<tr>
<td>p75</td>
<td>0.94 ± 0.23</td>
<td>0.84 ± 0.16</td>
<td>0.79 ± 0.11</td>
<td>0.85 ± 0.15</td>
<td>0.2</td>
<td></td>
</tr>
<tr>
<td>Sortilin</td>
<td>3.32 ± 1.72</td>
<td>2.76 ± 1.03</td>
<td>3.23 ± 1.56</td>
<td>3.09 ± 1.43</td>
<td>0.8</td>
<td></td>
</tr>
<tr>
<td>NRH2†</td>
<td>0.07 ± 0.06</td>
<td>0.08 ± 0.06</td>
<td>0.08 ± 0.05</td>
<td>0.07 ± 0.06</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>Phospho-JNK</td>
<td>0.08 ± 0.04</td>
<td>0.09 ± 0.02</td>
<td>0.13 ± 0.02</td>
<td>0.10 ± 0.04</td>
<td>0.006 (NCI, MCI) &lt; AD</td>
<td></td>
</tr>
<tr>
<td>JNK</td>
<td>0.72 ± 0.24</td>
<td>0.64 ± 0.16</td>
<td>0.66 ± 0.26</td>
<td>0.67 ± 0.22</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>JNK ratio</td>
<td>0.13 ± 0.08</td>
<td>0.15 ± 0.05</td>
<td>0.22 ± 0.08</td>
<td>0.17 ± 0.08</td>
<td>0.016 (NCI, MCI) &lt; AD</td>
<td></td>
</tr>
</tbody>
</table>

Data are expressed as mean ± SD (range). *Kruskal-Wallis test with Bonferroni correction for multiple comparisons. †NRH2 data was obtained from a subset of RROS cases (5 NCI, 4 MCI, 4 AD) and additional UK ADC cases (7 NCI, 5 MCI, 3 AD).
maintaining homeostatic regulation of the NGF neurotrophic system to preserve cognition during the onset of AD.

**Hippocampal TrkA, p75NTR, Sortilin, and NRH2 Levels During Disease Progression**

We found a significant decrease in TrkA expression levels in the MCI hippocampus compared with those in NCI and AD, suggesting a return to control levels as subjects transition from MCI to AD. Reduction in TrkA in the face of stable proNGF may enhance binding between proNGF and the p75NTR/sortilin/NRH2 complex, potentially shifting away from prosurvival signaling to proapoptotic signaling during prodromal AD. The unexpected rebound of TrkA levels in AD hippocampus to control levels indicates yet another example of the resilience of the human brain (4) perhaps in an attempt to stave off or slow the disease processes (7). It is important to note that NGF binding to TrkA reduces, whereas NGF binding to p75NTR activates, β-secretase cleavage of the amyloid precursor protein (20, 21), providing a molecular link between neurotrophic signaling in normal brain aging and AD and amyloid processing. Early reduction in hippocampal TrkA may also exacerbate the toxic effects of the amyloid protein during the prodromal stage of AD. However, the increase in TrkA found in AD suggests yet another neuroplastic

**FIGURE 2.** Box plots of hippocampal levels of Akt, phospho-Akt (p-Akt), and the ratio of p-Akt to Akt in cases clinically diagnosed as NCI, MCI, and AD. Representative immunoblots for p-Akt and Akt are also presented. (A) Levels of total Akt slightly decreased from NCI to MCI to AD. (B) Levels of p-Akt were increased in AD versus NCI and MCI, but the difference did not reach statistical significance. (C) The p-Akt-to–Akt ratio was significantly higher in AD versus NCI and MCI. * p = 0.036.
response to the disease process. In this regard, hippocampal CA1 neuronal TrkB expression is increased in cognitively intact cases displaying early-stage Braak I to II pathology compared with cognitively intact individuals with no NFTs (55). Although we did not find differences in any of the protein levels evaluated when we grouped our NCI cases into Braak stages I to II versus Braak stages III and above, our cohort did not contain NCI pathology-free cases. Further studies are needed to compare cognitively intact individuals with those with no NFTs, plaques only, or pathology-free cases. These observations further suggest that increased trophic factor activity marks brain reserve/resilience throughout the disease process.

We found stable amyloid protein levels in the hippocampus across disease stages similar to the lack of expression level changes for amyloid precursor protein and its metabolites reported in hippocampal CA1 neurons in MCI and AD (56). However, the harsh treatments needed to extract amyloid for quantitation may contribute to this observation. By contrast, others reported increased A\textsubscript{β}1-42 and A\textsubscript{β}40/42 ratio in the hippocampus of severe AD Braak stage VI cases (57). The severity of NFT pathology in these cases compared with our cohort may explain this difference. Nevertheless, the precise role that amyloid plays, if any, in the activation of neurodegenerative events during the onset of AD awaits further characterization (58).
Hippocampal Akt and Erk Levels During Disease Progression

Several downstream kinase-signaling cascades have been identified in NGF/TrkA survival activation (59). We found in AD hippocampus a significant increase in the phospho-Akt→ Akt ratio (60) but little difference among the 3 clinical groups in their expression levels of hippocampal Erk and phospho-Erk. A recent quantitative immunohistochemical study found an increase in Erk2 pT185/187 in samples taken from the mid-hippocampus of AD compared with NCI cases (60), whereas the present tissue was obtained from the caudal hippocampus. Therefore, these discrepancies may relate to methodological or regional differences. Although the precise biologic actions of an increase in phospho-Akt remain a challenging question in AD research, Akt may serve to suppress apoptosis directly by activating several different anti-apoptotic proteins, suppressing GSK3 apoptotic activities, or facilitating cell survival (61). Interestingly, in vivo findings also indicate that p75<sup>NT</sup> can activate Akt via a phosphatidylinositol 3-kinase pathway, which facilitates cell survival (62). These observations suggest that Akt mediates cell survival at a number of levels, depending on target availability and the requirement for transcriptional or posttranscriptional events to suppress apoptosis.

Hippocampal JNK Levels During Disease Progression

Although proNGF upstream receptor binding initiates downstream JNK apoptotic signaling (63), we found that JNK remained stable across clinical groups. However, phospho-JNK and the ratio of phospho-JNK to JNK were significantly increased in AD compared with those in NCI and MCI. The increase in phospho-JNK may reflect a chronic and accumulative stress process that builds during the disease process and may be a very early marker for neuronal degeneration as it is associated with neurofibrillary alteration in some elderly controls (64). In the transition from MCI to AD, hippocampal phospho-JNK activation occurs in the face of increased levels of proNGF and phospho-Akt and reduced level of TrkA, despite no change in amyloid level. This suggests that increasing TrkA and phospho-Akt in AD might offset a shift toward JNK-mediated apoptotic signaling in AD. Similar to proNGF, we found that higher hippocampal phospho-JNK levels correlated with lower cognitive test scores, suggesting that proapoptotic signaling abnormalities ultimately override the putative compensatory TrkA-mediated prosurvival cascades as the disease progresses.

Neuropathologic and Clinical Correlation With Hippocampal ProNGF, Phospho-Akt, and Phospho-JNK During Disease Progression

When using the Braak scores for NFT number and anatomic distribution and NIA-Reagan criteria for pathologic diagnosis, combined with CERAD pathologic findings, we found remarkable similarity in the degree of pathology between the MCI and AD groups, although only the AD group displayed an upregulation of hippocampal proNGF, phospho-Akt, and phospho-JNK activity. These data suggest that global AD-like pathology in general does not mediate the increase of these proteins. Of particular interest is the observation that many NCI cases displayed Braak, NIA-Reagan, and CERAD scores similar to that seen in both MCI and AD subjects; this was previously reported also in our other studies using RROS tissue (24, 65) as well as in other MCI populations (66, 67). Moreover, there was a positive correlation between TrkA and severity of pathology. Together, the present findings suggest the need to rethink the involvement of classic AD pathology in the early initiation and/or generation of neurotrophic dysfunction in the early stages of AD. Moreover, the negative correlation between proNGF and cognitive function was observed both in the hippocampus and, previously, in the cortex (33). On the other hand, hippocampal TrkA levels did not correlate with cognitive function, whereas cortical TrkA levels were positively correlated with cognitive function (36). These findings suggest that alterations in NGF upstream and downstream signaling are associated with conversion to AD (68–70).

Summary

A schematic summary of the present study is presented in Figure 5. Whether alterations in proNGF signaling pathways are a primary event in the pathogenesis of AD or a secondary response to other pathologic changes remains

---

**TABLE 4. Summary of Hippocampal Amyloid Load by Diagnosis Category**

<table>
<thead>
<tr>
<th>Clinical Diagnosis</th>
<th>NCI (n = 11)</th>
<th>MCI (n = 13)</th>
<th>AD (n = 13)</th>
<th>Total (N = 37)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>SDS 42</td>
<td>8.39 ± 1.13 (6.55–9.88)</td>
<td>9.27 ± 1.11 (6.71–11.49)</td>
<td>9.00 ± 0.82 (7.82–10.29)</td>
<td>8.94 ± 1.04 (6.55–11.49)</td>
<td>0.1</td>
</tr>
<tr>
<td>SDS 40</td>
<td>5.43 ± 0.80 (4.73–7.59)†</td>
<td>5.36 ± 0.58 (4.37–6.43)</td>
<td>5.45 ± 0.43 (4.73–6.16)</td>
<td>5.43 ± 0.62 (4.37–7.59)</td>
<td>0.7</td>
</tr>
<tr>
<td>SDS 42/40 ratio</td>
<td>2.96 ± 1.34 (0.17–4.24)†</td>
<td>3.92 ± 1.05 (1.60–5.71)</td>
<td>3.55 ± 0.71 (2.43–4.75)</td>
<td>3.51 ± 1.08 (0.17–5.71)</td>
<td>0.2</td>
</tr>
<tr>
<td>FA 42</td>
<td>9.13 ± 1.33 (7.20–11.17)</td>
<td>8.43 ± 2.33 (4.23–12.31)</td>
<td>9.03 ± 1.68 (5.96–10.59)</td>
<td>8.96 ± 1.80 (4.23–12.31)</td>
<td>0.6</td>
</tr>
<tr>
<td>FA 40</td>
<td>6.30 ± 0.75 (5.44–8.02)</td>
<td>6.18 ± 1.12 (4.86–9.04)</td>
<td>6.19 ± 0.93 (4.75–7.92)</td>
<td>6.29 ± 0.99 (4.75–9.04)</td>
<td>0.6</td>
</tr>
<tr>
<td>FA 42/40 ratio</td>
<td>2.83 ± 1.56 (−0.82 to 4.85)</td>
<td>2.25 ± 1.69 (−1.52 to 4.29)</td>
<td>2.92 ± 1.24 (1.07–4.75)</td>
<td>2.66 ± 1.48 (−1.52 to 4.85)</td>
<td>0.5</td>
</tr>
</tbody>
</table>

Data are expressed as mean ± SD (range).

*All values were log-transformed so these summary statistics were less skewed by the non-normality in the data.

†After exclusion of 1 outlier: 5.21 ± 0.38 (4.73–5.88).

‡After exclusion of 1 outlier: 2.41 ± 0.12 (1.34–4.24).

SDS, sodium dodecyl sulfate-soluble fractions; FA, formic acid fractions.
FIGURE 4. (A–F) Hippocampal proNGF and phospho-JNK protein levels negatively correlated with cognitive function, as measured by the MMSE score (A, D), Global Cognitive Score (B, E), and episodic memory $z$ score (C, F). NCI, open squares; MCI, filled triangles; AD, open circles.
unknown. Because we found overlapping plaque and NFT pathology and no modification in the expression levels of AB1-40, AB1-42, and AB40/42 ratio across clinical groups, these degenerative events may not play a direct role in hippocampal neurotrophin dysregulation. In the present study, the positive correlation observed between hippocampal proNGF and phospho-JNK levels and their negative correlation with cognitive test scores, including episodic memory, indicate that hippocampal NGF signaling abnormalities play a pervasive and key role in cognitive impairment during the onset of AD and represent drug targets for the treatment of dementia.

ACKNOWLEDGMENTS

The authors declare no conflicts of interest. The authors thank the nuns, priests, and brothers from across the country who participated in the Rush Religious Order Study and the Rush Alzheimer’s Disease Center staff. The authors also thank patients and research participants at the University of Kentucky Alzheimer’s Disease Center.

REFERENCES


52. Bruno MA, Cuello AC. Activity-dependent release of precursor nerve growth factor, conversion to mature nerve growth factor, and its degradation by a protease cascade. Proc Natl Acad Sci USA 2006;103:6735–40

© 2012 American Association of Neuropathologists, Inc.