Msx1-Deficient Mice Fail to Form Prosomere 1 Derivatives, Subcommissural Organ, and Posterior Commissure and Develop Hydrocephalus

P. Fernández-Llebrez, PhD, J. M. Grondona, PhD, J. Pérez, PhD, M. F. López-Aranda, G. Estivill-Torrús, PhD, P. F. Llebrez-Zayas, E. Soriano, PhD, C. Ramos, PhD, Y. Lallemand, MD, A. Bach, and B. Robert, MD

Abstract. Msx1 is a regulatory gene involved in epithelio-mesenchymal interactions in limb formation and organogenesis. In the embryonic CNS, the Msx1 gene is expressed along the dorsal midline. Msx1 mutant mice have been obtained by insertion of the nlacZ gene in the Msx1 homeodomain. The most important features of homozygous mutants that we observed were the absence or malformation of the posterior commissure (PC) and of the subcommissural organ (SCO), the collapse of the cerebral aqueduct, and the development of hydrocephalus. Heterozygous mutants developed abnormal PC and reduced SCO, as revealed by specific antibodies against SCO secretory glycoproteins. About one third of the heterozygous mutants also showed hydrocephalus. Other defects displayed by homozygous mutants were ependymal denudation, subventricular cavitations and edema, and underdevelopment of the pineal gland and subfornical organ. Some homozygous mutants developed both SCO and PC, probably as a consequence of genetic redundancy with Msx2. However, these mutants did not show SCO-immunoreactive glycoproteins and displayed obstructive hydrocephalus. This suggests that Msx1 is necessary for the synthesis of SCO glycoproteins, which would then be required for the maintenance of an open aqueduct.

Key Words: Circumventricular organs; CNS development; Diencephalic development; Immunocytochemistry; Mutant; Regulatory genes; Transcriptional factors.

INTRODUCTION

The development of the vertebrate forebrain depends on the temporal-spatial expression of regulatory genes that establish a series of rostro-caudal subdivisions called prosomeres (1). The posterior commissure (PC) forms in the dorsal midline of prosomere 1 (P1). Beneath it the dorsal midline ependyma differentiates into a secretory circumventricular organ named the subcommissural organ (SCO), whose cells develop basal processes that intermingle with the PC fibers (2). The SCO secretes high molecular weight glycoproteins into the third ventricle that polymerize in a thick fiber known as Reissner’s fiber (3). This fiber runs along the aqueduct, the fourth ventricle, and the spinal central canal and its function remains enigmatic. Polyclonal and monoclonal antibodies have been raised against SCO secretory glycoproteins (4, 5). These antibodies show that, in most vertebrates, the SCO begins its secretory activity at early developmental stages and is active for lifetime. In the chick and the duck, the secretory activity of the SCO precedes the appearance of axonal bundles in the PC (6). In contrast, the first immunocytochemical evidence for glycoprotein release in the rat was observed at E15 when a growing PC is still present (7). In the mouse, the SCO starts synthesizing glycoproteins at about E14.5 (8), while axonal bundles of the PC are visible beginning at E10.5 (9). The tight morphological relationship between the SCO cells and the PC, and the fact that SCO secretory glycoproteins stimulate in vitro neuronal adhesion and neurite extension (10), suggested some functional or developmental relation similar to that described for the spinal floor plate and the ventral commissure (11-13). Indeed, an SCO secretory glycoprotein was found to share homology with F-spondin and hence was called SCO-spondin. It is a candidate to exert axonal guidance properties (14, 15).

A developmental morpho-functional relationship between the SCO and the PC was also evident in mouse strains carrying mutations in certain regulatory genes. Pax6 is an important gene for P1 development. Estivill-Torrús et al demonstrated that small eye mutant mice that express a non-functional form of Pax6 protein fail to develop the SCO, the PC, and the pineal gland (8). Conversely, mutations in Pax2/5 genes, which are expressed in the mesencephalon, led to the posterior extension of Pax6 expression domain, and consequently, to the development of a caudally expanded PC over a thick subjacent ependyma morphologically similar to the SCO (16). Moreover, Pax6 null mice mutants expressing Pax6 under the control of Pax2 enhancer sequences, although lacking a pretectum, developed an ectopic PC in the rostral-most
mesencephalon, suggesting that expression of Pax6 in a population of responsive cells in the caudal diencephalon induces PC formation (16). On the other hand, ectopic expression of En1 in the territory of Wnt1, including the dorsal midline of P1, led to the absence of formation of the SCO and severe errors in axonal pathfinding of the PC (17). Thus, there seems to be a functional link between the development of SCO and of the PC.

A common feature in animal models lacking SCO, or with abnormal SCO, is the development of hydrocephalus. This pathology is observed in Pax6 (18) and Wnt1 mutants, corelatively with an alteration in SCO forma-
tion (17, 19). Mutants for the Msx1 gene, which encodes an RNA-binding protein of the Musashi family, also show malformations in the SCO and the aqueduct and obstructive hydrocephalus (20). Also, mutants for the transcription factor RFX4 obstructive hydrocephalus (20). Thus, there seems to be a functional link between the development of SCO and severe errors in axonal pathfinding of the PC (17). Thus, there seems to be a functional link between the development of SCO and severe errors in axonal pathfinding of the PC (17).

Whole Mount β-Galactosidase Staining

E11.5 and E12.5 embryos were removed, rinsed in 0.1 M phosphate buffer saline (PBS), and fixed in 4% paraformaldehyde in PBS for 20 min. After washing twice in PBS (5 min each), embryos were put in a 0.1 M PBS solution containing 5 mM potassium ferricyanide, 5 mM potassium ferrocyanide, 2 mM magnesium chloride, 0.02% Nonidet P-40 (w/v), and 400 µg/ml X-Gal (5-bromo-4-chloro-3-indolyl-beta-D-galactopyra-

In Situ Hybridization

Msx1 antisense riboprobe was labeled with digoxigenin-dUTP (Boehringer Mannheim, Mannheim, Germany) by in vitro transcription of a 0.7-kb fragment-encoding mouse Msx1 using T3 polymerase (Ambion, Austin, TX). Sense probe (using T7 polymerase) was used as control. In situ hybridization was performed on free-floating cryostat sections of paraformaldehyde-fixed embryos essentially as previously described (44, 45). Sections were prehybridized at 60°C for 3 hours in a solution containing 50% formamide, 10% dextran sulfate, 5X Denhardt’s solution, 0.62 M NaCl, 10 mM EDTA, 20 mM PIPES, 250 µg/ml sheared salmon sperm DNA, and 250 µg/ml yeast tRNA. Labeled riboprobe cRNA was added to the prehybridization buffer (500–1,000 ng/ml) and hybridization was performed at 60°C overnight. After stringent washes, sections were incubated at 4°C overnight with an anti-digoxigenin antibody.
conjugated to alkaline phosphatase (Roche, Barcelona, Spain) and developed with nitroblue tetrazolium (NBT) and 5-bromo-4-chloro-3-indolyl-phosphate toluidinium salt (BCIP). Tissue sections were mounted on gelatinized slides and coverslipped with Mowiol. For adults, brains were dissected out, fixed in 4% paraformaldehyde, cut using a cryostat, and processed as outlined above.

**Immunocytochemical Analysis**

E 18.5 wild-type (n = 4) and mutant (n = 7) embryos and brains from postnatal mouse (P40, n = 4; adults n = 2) were fixed in paraformaldehyde as described above. After being washed in PBS, they were embedded in paraffin and 10-μm coronal and sagittal sections were made. For immunocytochemistry, all steps were carried out at room temperature. Sections were first treated for 10 min with PBS containing 10% methanol and 10% hydrogen peroxide to inactivate endogenous peroxidase. After washing, they were exposed to one of the following antibodies for 18 hours: i) AFRU, the polyclonal antibody that strongly recognizes the secretory material of SCO along vertebrate phylum (4). ii) 4A6, the monoclonal antibody that selectively recognizes the secretory glycoprotein(s) of the mammals SCO (5). Immunocytochemical, immunoblot, and ELISA studies have revealed that this monoclonal antibody, among many others tested, provided the best results for localization of SCO secretory materials (5). iii) Anti-GAP43 (GAP-7B10, mouse monoclonal, 1:1,000 dilution, Sigma, Madrid, Spain). Rabbit anti-mouse IgG (Sigma) was used as secondary antibody. All the antibodies were diluted in PBS containing 0.5% Triton X-100 and 2.5% normal serum. Sections were incubated for 45 min with the secondary antibody and diluted 1:50 in the same diluting agent as the primary antibody. After washing in buffer, the sections were incubated for 45 min at 22°C with a mouse PAP (Sigma, diluted 1:200). 3,3′ diaminobenzidine tetrahydrochloride (DAB, Sigma) was used as revealing agent. Omission of the primary antibody resulted in no detectable staining. Sections were counterstained with hematoxylin when required. Parallel sections of some brains were stained with hematoxylin and eosin (H&E) for a general histological description and with Alcian-blue staining for the demonstration of cartilage. Whole mount immunocytochemistry was made using anti-GAP43 after β-galactosidase staining domain at the midline and the PC appeared formed by several bundles of perpendicular axons. Homozygous mutants (Fig. 2B–D) exhibited an interruption of the β-galactosidase staining of the P1 dorsal midline of variable severity, as previously described (40). Some homozygous mutants displayed a phenotype similar to the described heterozygous specimen (Fig. 2A, B). A continuous dorsal β-galactosidase labeling and the PC were visible although axonal bundles appeared thinner. A second case was a homozygous mutant that showed a weaker β-galactosidase labeling, fewer PC fibers, and errors in fiber pathfinding (Fig. 2D). Finally, the most frequent phenotype of homozygous mutants (Fig. 2C) displayed an evident interruption in the β-galactosidase staining domain at the prospective P1 that showed very few PC fibers. These data show a correlation between the extent of midline Msx1 expression interruption and the degree of disorganization of the PC.

**RESULTS**

**The SCO of Wild-type Embryos and Adults Expresses the Msx1 Gene**

We have studied the expression of Msx1 gene either by revealing the presence of β-galactosidase in heterozygous and homozygous mutants or by in situ hybridization in wild-type specimens. We had previously established that β-galactosidase activity in the CNS of mutant embryos matched Msx1 transcript distribution at different developmental stages (40). We have detected the secretory glycoproteins of the SCO by using a polyclonal antibody AFRU and Mab 4A6, a specific monoclonal antibody that selectively binds to the secretory material of the SCO (5). Both showed the same staining pattern and intensity. The extent of Msx1 expression in brain structures has been described elsewhere (40). In this study we paid special attention to the region of the prosomere 1 (P1), where PC develops. The dorsal midline of the neural tube of E12.5 embryos expressed Msx1 from the optic stalk to the tip of the tail (not shown) including P1 (Fig. 1A). The expression of Msx1 in P1 occurs in the neuroepithelium just beneath the fiber bundles of the posterior commissure (Fig. 1B, C). This neuroepithelium begins to synthesize specific glycoproteins at about E14.5, as revealed by its immunoreactivity to antibodies against its secretory glycoprotein(s), and, therefore, from this age can be regarded as SCO (8). At E18.5, the SCO was well-developed and actively secreting glycoproteins that were immunoreactive to Mab 4A6 (Fig. 1F). In situ hybridization confirmed that, at E18.5, the SCO is the region showing the highest Msx1 expression in prosomere 1 while the surrounding ependyma is almost devoid of Msx1 transcripts (Fig. 1D). The SCO of adult mice maintained a strong expression of Msx1 gene (Fig. 1E) concomitantly with a high secretory activity (Fig. 1G). All parts of SCO cells contained secretory glycoproteins, including the apical and perinuclear cytoplasms and the basal processes that crossed the posterior commissure and ended in the leptomeninges (Fig. 1F, G).
Phenotype of Homozygous E18.5 Msx1

To perform a detailed histological study we sectioned and stained wild-type specimens and homozygous and heterozygous mutants at E18.5 and P40. Most E18.5 homozygous mutants (5 of 7 studied) showed absence of SCO and PC as well as aqueductal collapse and hydrocephalus. In 2 of 7 mutants, a PC was present as well as an underlying thick ependymal structure that highly resembled the SCO as depicted after the use of unspecific histological dyes. We first describe the most frequent phenotype of homozygous mutants. This mutant phenotype corresponded to that shown in Figure 2C, having absence of β-galactosidase staining in the region of P1 just beneath the prospective PC. The most conspicuous malformation was the lack of P1 derivatives SCO and the PC. This is quite clearly seen in sagittal sections (Fig. 3B, D, F). In the anatomical region where the SCO should be present, a monolayer ependyma was found but no morphological or immunocytochemical signs of a SCO were evident. The SCO of wild-type mice were characterized by a thick prismatic ependyma with long basal processes that showed strong immunoreactivity (Figs. 1E, 3A, C). None of these characteristics could be seen in the corresponding region of homozygous mutants (Fig. 3B, D, F). PC was absent in these mutants. However, few cross-sectioned axonal bundles could be detected beneath the ependyma of this region (Fig. 3F insets). These bundles could correspond to the few fibers seen in whole mount preparations of younger embryos (Fig. 2C). Another characteristic of null mutants was the absence of an open aqueduct. In none of the specimens studied missing the PC and the SCO was the aqueduct open. It was always collapsed at its rostral region, anterior to the collicular recess (compare Fig. 3B, D, F with Fig. 3A, C, E and Fig. 4H, I, M with Fig. 4K, L, P). The ependymal walls of both sides approached and no lumen could be seen between them. In the periaqueductal region, pyknotic nuclei surrounded by a clear cytoplasmic halo were frequent.
Fig. 2. The degree of development of the PC varies in different mutants and is related to the presence of an underlying neuroepithelium. A–D: Whole mount E11.5 embryos doubly labeled for β-galactosidase and antibodies against the axonal protein GAP43. A: This heterozygous shows a well-developed posterior commissure (pc) over the β-galactosidase-stained neuroepithelium (arrows). B–D: These 3 homozygous mutants show different degrees in the development of the posterior commissure (pc), but in all cases the paucity of fiber tracts and the presence of misconducted fibers (D, arrows) is related to the intensity of β-galactosidase staining. Abbreviations: P1, P1 prosomere; m, mesencephalon. The calibration bar in panel D applies to all panels (300 μm).

(Fig. 5D). In wild-type mice, although a certain degree of collapse was normal in the ventral region of the aqueduct as seen in transverse sections, there was always an open region dorsally just beneath the subcommissural organ (Fig. 4M, inset). In mutants, the absence of SCO was accompanied by the occlusion of this lumen (Fig. 4P inset). There was no difference with respect to the collicular recess, the caudal aqueduct, or the fourth ventricle (Fig. 3A, B).

Other circumventricular organs of the dorsal midline showed morphological differences as compared with wild-type mice. The pineal gland of E18.5 wild-type mice appeared as a solid structure rostral to the SCO and attached to the diencephalic roof by the pineal stalk (Figs. 3A, 4I). In mutants, an anomalous undeveloped pineal gland was located in the proximity of the wall of an expanded pineal recess in continuity with the third ventricle (Figs. 3B, 4L). The anterior choroid plexus of mutants looked normal under the light microscope. The subfornical organ (located beneath the fornix) was reduced in mutants as depicted in sagittal and transverse sections (compare Fig. 3A with 3B and Fig. 4B with 4E).

Hydrocephalus was one of the most conspicuous features and fully penetrant of the homozygous mutant phenotype and affected both lateral ventricles and the third ventricle (Figs. 3, 4). Together with hydrocephalus, a thinning of the cortical mantle and a smaller hippocampus and fornix were seen in mutants (Fig. 4). We did not observe significant differences in the size of the corpus callosum, the anterior commissure, and the habenular commissure (Figs. 3, 4). Sometimes, edema and subventricular cavitations were found, especially in the rostral horn of the lateral ventricles. Another characteristic event occurring in E18.5 homozygous mutants was denudation of the ependymal layer in a region located in the dorsal third ventricle next to the opening of the foramen of Monroe (Fig. 4F). In this region, supraependymal cells were frequent. Also the presence of a cartilaginous bar in the caudal region of the interhemispheric wall, identified after Alcian-blue staining, was typical in mutants (Fig. 4J, insets).

As described above, the phenotype of homozygous mutants was not fully penetrant. Although most of the specimens studied lacked structures derived from prosomere 1, some specimens displayed PC and a thick subjacent pseudostratified ependyma that, using unspecific dyes, looked similar to that of the SCO (Fig. 5A). In paraffin sections of homozygous mutants having a structure with the morphology of an SCO, the monoclonal antibody 4A6 stained only very few individual ependymal cells of the region, the vast majority of them being neg-
Fig. 3. The subcommissural organ and the posterior commissure are absent in homozygous mutants. Mid-sagittal paraffin sections through the brains (E18.5) of a wild-type (A, C, E) and a homozygous mutant *Msx1* nlacZ/nlacZ (B, D, F) stained with H&E (A, B), the monoclonal antibody 4A6 that recognizes the secretory material of the subcommissural organ (C, D) and the monoclonal antibody GAP43 that recognizes axonal bundles (E, F). Although wild-type animals have a prominent subcommissural organ (sco) and posterior commissure (pc), both structures are absent in this mutant. F, inset: Details of the region where presumptively the SCO should be present; cross-sectioned fiber bundles are present beneath the local neuroepithelium (arrows).

In mutants, hydrocephalus is evident in the lateral ventricles (lv) and third ventricle (IIIv) but not in the collicular recess (cr). The pineal gland is present, lining the wall of an enlarged pineal recess. Although an open rostral aqueduct is evident in wild-type (aq), we never seen an aqueductal lumen in any of the serial sagittal sections done in mutants. However, the caudal part of the aqueduct is present in both (A, B, arrowheads). Levels indicated in panel A correspond with the transverse sections shown in Figure 4. Abbreviations: hc, habenular commissure; sfo, subfornical organ. The calibration bar in panel E applies to all panels (500 μm) and to inset (80 μm).

Phenotype of Heterozygous *Msx1*+/nlacZ Mutants

The phenotype of heterozygotes varied from being almost indistinguishable to that of wild-type mice to animals showing severe defects in P1 derivatives. About one third of the heterozygotes studied showed hydrocephalus.
Fig. 4. Phenotype of the brain of homozygous mutant *Msx*1<sup>nlacZ/nlacZ</sup>. Representative transverse sections through the brain of E18.5 wild-type (A–C, G–I, M–O) and homozygous mutant *Msx*1<sup>nlacZ/nlacZ</sup> (D–F, J–L, P–R) at the levels indicated in Figure 3A stained with H&E. Hydrocephalus is evident in the lateral ventricle (lv) and third ventricle (IIIv) but not in the collicular recess.
SCO ABSENCE AND HYDROCEPHALUS IN Msx1 MUTANT MICE

J Neuropathol Exp Neurol, Vol 63, June, 2004

In all of these animals, the SCO was present and immunoreactive to 4A6. However, its size was about half the size of a wild-type SCO. Whereas the immunoreactive SCO of P40 wild-type specimens extended rostrocaudally for about 500 μm, the SCO of heterozygotes occupied no more than 250 μm (Fig. 6A, B). This size reduction was also evident in transverse sections where the SCO of heterozygous was also half the size of wild-type SCO (Fig. 6C, D insets). The PC was present in heterozygous mutants and, in contrast to SCO, its size was similar to that of wild-type. The caudal region of the SCO of heterozygotes was quite disorganized (Fig. 6H) compared to wild-type (Fig. 6F) and showed digitations, branches (Fig. 6B), and rosettes, some displaying 4A6-immunoreactive cells (Fig. 6H). An open rostral aqueduct similar to that seen in wild-type (Fig. 6G) was never observed in heterozygotes with phenotypes of this type. The ependymal wall from both sides of the aqueduct approached and no lumen was visible (Fig. 6I). The most prominent feature of these mutant specimens was severe hydrocephalus. The lateral ventricles were dramatically enlarged (compare Fig. 6C with 6D, both at the same magnification) and most of the wall surfaces were devoid of ependyma (Fig. 6D inset). The thinning of the cortical mantle was maximal and in some places virtually no neuronal tissue was present between the ventricular wall and the meninges (Fig. 6D). In the ventricle, floculent materials and cellular elements and debris were present. Also, it was not uncommon to find erythrocytes. In the rostral lateral ventricles, subventricular cavitations and edemas were abundant, as well as what appeared to be distended subventricular blood vessels (Fig. 6E). Hydrocephalus was restricted to the lateral and the third ventricles.

DISCUSSION

The Expression of Msx1 Is Necessary for the Development of Structures Derived of the Dorsal Midline of Prosomere 1

Two structures derived from the dorsal midline of P1 are the SCO and the PC (46). During embryonic development, several regulatory genes are expressed in this region at different time periods and with a specific spatial distribution (1). Absence of expression of some of these
Fig. 6. A, B: Sagittal sections through the diencephalic dorsal midline of P40 wild-type and heterozygous Msx1^{+/lacZ} mutants, respectively, immunostained with monoclonal antibody 4A6 that selectively binds the secretory glycoproteins of the subcommissural organ and counterstained with H&E. Note that in mutants the immunopositive secretory organ is highly reduced although the posterior commissure (pc) is present. The levels of the transverse sections are indicated in panels C–I. C, D: Panoramic survey of transverse sections through the brain of P40 wild-type and heterozygous Msx1^{+/lacZ} mutants, respectively, immunostained with monoclonal antibody 4A6 at the levels indicated in panels A and B (same magnification). The rostral region of the subcommissural organ is shown in detail in the inset in panel C and in panel D inset a. In mutants the immunoreactive organ is reduced to about 50% as compared to wild-type. Note the acute hydrocephalus of the lateral ventricles (lv) in mutants, the thinning of the cortex, and the absence of ependyma (inset b, arrow). E: Transverse section through the enlarged rostral horn (rh) of the lateral ventricle of a P40 heterozygous mutant showing subventricular cavitations and edema (arrow). F, G: Transverse sections through the levels indicated in panel A showing the immunoreactive caudal subcommissural organ and the open rostral aqueduct of wild-type mouse. H, I: Transverse sections through the levels indicated in panel B. Note disorganization of the caudal subcommissural organ and the rostral aqueduct with ependymal digitations and/or rosettes, some showing immunoreactive cells among the fibers of the posterior commissure (pc). The aqueduct is collapsed and no lumen is visible. The calibration bar in panel F applies to panel A and B (250 μm); C and D (2,200 μm); E (800 μm); F–I (60 μm); D (20 μm); and to insets (120 μm).
genes or ectopic expression in P1 of regulatory factors normally restricted to neighboring territories leads to the absence or malformation of the SCO and the PC (see Introduction). Recently, it has been stated that the borderline between the diencephalon and mesencephalon is established by a series of inductive and repulsive interactions of several regulatory genes, among which Pax6, Pax2, Pax5, and En1 are of crucial importance (47). Thus, it seems that the development of PC and SCO depends on the expression of regulatory genes in P1 and the neighboring regions.

Msx1 is a regulatory gene involved in epithelio-mesenchymal interactions at sites of embryonic induction, such as in the developing limbs (43). Although Msx1 expression extends along the entire length of the CNS dorsal midline (38, 39), in mutants we found the most dramatic effects in P1 derivatives SCO and PC that virtually did not develop. Thus, in addition to other regulatory genes, the development of SCO and PC depends on the expression of Msx1.

Although most homozygous Msx1 mutants lacked SCO and PC, a few specimens displayed both structures. It is known that, in addition to Msx1, the Msx2 gene is expressed at E10.5 in the dorsal P1, but weakly, and is downregulated at E12.5 (40). Furthermore, it has been reported that Msx1 and Msx2 proteins exhibit similar DNA binding properties and function (35). Hence, it is likely that the absence of the Msx1 protein is partially compensated by Msx2. However, in these few homozygous mutants displaying a structure morphologically similar to SCO, compensatory mechanisms do not seem to be complete since only very few SCO cells show the characteristics that define SCO cells, namely, the capacity to secrete specific glycoproteins. The presence of this type of specimens demonstrates that expression of Msx1 is needed not only for the formation of the SCO primordium but also for the specific secretory activity of the functional SCO, and that the presence of these specific secretory glycoproteins do not seem to be necessary for the development of the PC (see later). The necessity of Msx1 expression for SCO glycoprotein secretion was also reflected by the high Msx1 expression of the adult SCO.

How Msx1 expression affects CNS development is not presently known, however, some reports reveal interesting clues. It has been shown that Msx1 is coexpressed with Bmp and Wnt genes (40, and references therein) and thus the effects observed in mutants could be related to changes in the production of these diffusible molecules. Significantly, BMP signaling has been demonstrated in the regulation of the expression boundaries of the homeobox proteins Pax6 and Msx1 during the development of the dorsal neural tube (48), allowing us to hypothesize a similar relationship in the dorsal P1 development. On the other hand, it has been reported that Msx1 and Msx2 regulate cadherin-mediated cell adhesion and cell sorting (49) and selective expression of cadherins define CNS territories (50). A normal mouse SCO development correlates with expression of R-cadherin and OB-cadherin (8); therefore it is possible that the absence of SCO development in Msx1 mutants could be related to changes in the pattern of cadherin expression. It has also been shown that the amount of connexin43 protein was associated with the level of Msx1 expression (51). Connexin43 forms gap-junctions that are of importance for the activity of the SCO (52).

The Secretory Activity of the SCO Depends on the Amount of Msx1 Protein

From the above data, the presence of Msx1 protein seems to be necessary for the secretory activity of the SCO. In spite of the presence of a structure that morphologically resembles the SCO beneath the PC of some homozygous mutants, the vast majority of its ependymal cells were negative to a specific monoclonal antibody that identifies rodent SCO secretory glycoproteins (5). The possibility exists that these specimens synthesize a modified form of SCO-glycoprotein that lack the epitope recognized by Mab 4A6. Thus, we used a polyclonal antisera (AFRU) that recognized a wide spectrum of epitopes and other monoclonal antibodies raised in our laboratory (5, results not shown) with exactly the same results in all cases. These evidences indicate that very probably SCO specific glycoproteins are absent in Msx1 homozygous mutants.

Heterozygous mutants displayed a range of SCO phenotypes varying from almost normal to highly reduced. This fact could be the consequence of 2 factors: 1) genetic redundancy with Msx2, as has been discussed above, and 2) dose dependence. The most frequent heterozygous phenotype showed a reduced secretory SCO. Since heterozygous mutants produce half the amount of Msx1 functional protein, the number of secretory cells in the SCO could depend directly on the amount of Msx1 protein present in the cells.

Expression of SCO-Glycoproteins and the Formation of PC

As discussed above, the development of SCO and PC depend on Msx1 (and/or Msx2) gene expression. We never found a PC without SCO or vice-versa, which was also true in small eye mutants (8). A putative involvement of SCO secretory glycoproteins in PC development of the posterior commissure was suggested based upon 2 facts: i) The SCO seems to release secretory molecules at its basal pole, including the basal processes protruding among the fiber bundles of the PC (53); and ii) SCO specific glycoproteins exert, in vitro, an important influence on neuronal adhesion and neurite extension (14, 15, 54). However, according to our results, some Msx1 homozygous mutants displayed a PC over an SCO that did
not have specific SCO secretory glycoproteins, as depicted after the use of specific antibodies. This indicates that SCO secretory glycoproteins are not essential for the formation of PC and is supported by other evidence. In the mouse, axonal bundles of the PC are visible from E10.5 (9), whereas the SCO starts synthesizing glycoproteins at about E14.5 (8). Moreover, mutant mice lacking the transcription factor RFX4v3 fail to develop SCO, although PC is present (55). It is, however, feasible that the dorsal midline neuroepithelium of the prosomer 1, either before or during SCO development, could be the origin of still unidentified axonal guidance molecules involved in the formation of PC.

SCO Defects Are Related to Aqueductal Stenosis and Hydrocephalus in Mutants

According to our results, the absence of SCO and PC in Msx1 mutants was linked to alterations and collapse of the aqueductal wall and hydrocephalus. Even in heterozygous mutants with a partially developed SCO, the aqueduct showed important defects. Several reports demonstrate the requirement of a functional SCO for the development of the aqueduct and hence for the prevention of obstructive hydrocephalus. Evidence can be classified into 3 groups. A first group is formed by rodent strains carrying spontaneous mutations, such as the SUMS/NP mouse (23), the H-Tx rat (25), the MT/HokIdr mouse (21), the CWS/Idr rat (22), and the hyh mouse (27). A second group is composed of mouse mutants for regulatory genes, such as Pax6 (8), Msi1 (20), Wnt1, the transcription factor RFX4v3 (55) and ectopic En1 (17). A third group comprises experimental models such as newborn rats from mothers fed with vitamin B12- or folic acid-deficient diets (30, 31) and from X-irradiated mothers (29). All these studies point to the same conclusions: defects in the formation of the SCO lead to obstruction in the aqueduct and hydrocephalus. In accordance with this proposal, it has been reported that immunoneutralization of the SCO of developing rats by maternal transfer of antibodies led to stenosis of the aqueduct and a consequent hydrocephalus (32). Thus, it has been proposed that the specific glycoproteins released by the SCO into the cerebrospinal fluid of the third ventricle are responsible for the maintenance of an open aqueduct. Accordingly, most homozygous Msx1 mutants that lacked SCO displayed aqueductal stenosis and hydrocephalus. Interestingly, the few homozygous Msx1 mutants that showed a PC and a structure resembling SCO also suffered from aqueductal stenosis and hydrocephalus. In these animals, the SCO did not produce any specific glycoprotein recognized by the antibodies used. This reinforces the hypothesis that not only the presence of a SCO structure, but also the presence of specific SCO glycoproteins in the CSF, is necessary for the maintenance of an open aqueduct.

By which mechanism SCO-specific glycoprotein(s) prevents aqueductal collapse and hydrocephalus is not known. SCO-spondin (14) and RF-Gly I (56), the 2 characterized SCO glycoproteins, show repeated sequences that could be responsible for the aggregative or anti-aggregative properties displayed by RF glycoproteins in vitro (54). On the other hand, it has been reported that rats with an immunoneutralization of the SCO display increased levels of monoamines in the cerebrospinal fluid (57) and monoamines participates in the control of cerebrospinal fluid production (58). Moreover, it was shown that choroid plexus have binding sites for SCO glycoproteins (59) and hence they could influence its function.

From the above data, it can be proposed that the development of hydrocephalus in Msx1 mutants is due to obstruction of cerebrospinal fluid (CSF) transit through the aqueduct. In addition, other features seen in mutants could favor the appearance and severity of this pathology. Under normal circumstances, about 20% of the CSF is produced by capillary filtration from the nervous parenchyma and reaches the ventricular CSF through spaces between the ependymal cells (60). Permeability through intercellular spaces among the ependymal cells has been reported to depend on mannosse-containing glycoconjugates and lectins (61, 62). Thus the absence of ependyma, as described in Msx1 mutants, could lead to increasing production of parenchymal CSF. This has been reported to be the primary cause of congenital hydrocephalus in developing Hyh rats (63). In these animals, ependymal denudation and hydrocephalus preceded aqueductal stenosis. In agreement with this idea we reported that experimental ependymal denudation in adult rats led to severe hydrocephalus (64). Another feature of Msx1 mutants that could contribute to the development of hydrocephalus are subventricular cavitations and edemas found in the rostral lateral ventricle. In other animal models these features have also been described in the rostral lateral ventricle (20).

In this report we have described a number of alterations found in Msx1 mutants, including reduced subfornical organ and a modified pineal gland. The presence of an ectopic cartilaginous bar in the inter-hemispheric wall could be considered a skeletal defect in addition to others known to occur in the craniofacial bones of Msx1 mutants (42).

ACKNOWLEDGMENTS

We acknowledge the skillful technical work of Jose Esteban Casares Mira.

REFERENCES


37. Furuta Y, Piston DW, Hogan BL. Bone morphogenetic proteins (BMPs) as regulators of dorsal forebrain development. Development 1997;124:203–12


60. Davson H, Segal MB. Physiology of the CSF and blood-brain barriers. Boca Raton, FL: CRC Press, 1996

Received October 6, 2003
Revision received February 4, 2004
Accepted February 9, 2004