BOOK REVIEWS


This book provides a detailed overview of recent research into the molecular, physiological, and anatomical basis of experimental spinal cord injury, with an emphasis on potential repair strategies. Thirty-one contributors, many of whom are leaders in spinal cord injury research, have produced 11 chapters dealing with a variety of topics, including cellular mechanisms of damage and repair, deregulation of Ca++ homeostasis, the spinal animal, neonatal spinal locomotor network organization, transduction of growth cone inhibitory signals, axonal microtubular changes during development and regeneration, and repair strategies based on neurodevelopmental clues. A separate chapter on stem cell biology might have been useful, but interest in this area in relation to spinal cord repair has heightened only very recently. The chapters are well written and extensively and currently referenced. Except for the chapter by Beattie and Bresnahan, morphology is not strongly emphasized. Nevertheless, there is much information of value to those interested in current research in the field. This book is a must for anyone who plans to do investigative work in experimental spinal cord injury.

RONALD C. KIM, MD