Abstract

Myoblasts were grown from monkey muscle biopsies and infected in vitro with a defective retroviral vector containing a cytoplasmic β-galactosidase (β-gal) gene. These myoblasts were then transplanted to 14 different monkeys, 6 of which were immunosuppressed with FK506. Without immunosuppression, only a few myoblasts and myotubes expressing β-gal were observed 1 week after the transplantation, but no cells expressing β-gal were observed after 4 weeks. This result was attributed to immune responses since infiltration by CD4+ or CD8+ lymphocytes was abundant 1 week after transplantation but not after 4 weeks. The expression of interleukin 6 (IL-6), interleukin 2 (IL-2), granulocyte/macrophage colony stimulating factor (GM-CSF), transforming growth factor-beta (TGF-β) and granzyme B mRNAs was increased in the myoblast-injected muscle indicating that the infiltrating lymphocytes were activated. Moreover, antibodies against the donor myoblasts were detected in 3 out of 6 cases. When the monkeys were immunosuppressed with FK506, muscle fibers expressing beta-galactosidase (β-gal) were present 1, 4 and 12 weeks after the transplantation. There was neither significant infiltration by CD4 or CD8 lymphocytes, nor antibodies detected. The mRNA expression of most cytokines was significantly reduced as compared to the nonimmunosuppressed monkeys. These results indicate that FK506 is effective in controlling short-term immune reactions following myoblast transplantation in monkeys and suggest that it may prove useful for myoblast transplantation in Duchenne Muscular Dystrophy patients.

This content is only available as a PDF.

Author notes

This work was supported by a grant and a scholarship (JTV) from the Association Française contre les Myopathies (AFM) and one grant from the Muscular Dystrophy Association of Canada (MDAC).